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ABSTRACT 
In this paper the architecture of an experimental multi-
paradigmatic programming environment is sketched, 
showing how its parts combine together with application 
modules in order to perform the integration of program 
modules written in different programming languages and 
paradigms. Adaptive automata are special self-modifying 
formal state machines used as a design and 
implementation tool in the representation of complex 
systems. Adaptive automata have been proven to have the 
same formal power as Turing Machines. Therefore, at 
least in theory, arbitrarily complex systems may be 
modeled with adaptive automata. The present work briefly 
introduces such formal tool and presents case studies 
showing how to use them in two very different situations: 
the first one, in the name management module of a multi-
paradigmatic and multi-language programming 
environment, and the second one, in an application 
program implementing an adaptive automaton that accepts 
a context-sensitive language.  
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1. INTRODUCTION 
Existing programming paradigms usually adhere to 
particular classes of problems. In order to handle complex 
and interdisciplinary problem, it should be convenient to 
use more than one paradigm in the application. [1] Multi-
paradigm environments may be used to allow users to 
handle different pieces of programs, written in a variety of 
paradigms and styles without leaving their programming 
environment. [2,3]. 
The same idea applies for maintenance tasks in which 
existing programs are to be modified or extended in their 
functionality. Then tasks usually involve inserting or 

substituting program parts with new pieces of code, 
written in more than one language.  
For instance, by using the logical programming 
paradigms, in some module of its application 
programmers state them in terms of rules, facts, and a 
goal. Such an approach adheres strongly to declarative-
style implementation of that module. [4] 
In single-language programs, programmers model the 
solutions of problems by using constructs available in the 
implementation language. When such a language does not 
adhere to the needs of the problem being solved, the 
programmer may have troubles when trying to map the 
chosen solution into its syntactical constructs. 
Therefore, the lack of a multi-paradigmatic programming 
environment or the non-availability of a language 
appropriate to solve a specific problem will force 
programmers to simulate constructs that are absent in the 
chosen available language. [5] 
In our proposal, a set of primitive functions is made 
available for the application process to call.  
Applications are made up of a set of processes that 
interact with the programming environment by means of 
system calls and information exchanges.  
The proposed environment should manage all resources 
needed to execute the multi-paradigmatic application, e.g. 
the allocation and management of shared memory and 
name handling for variables and data areas.  
By means of synchronizing and communication 
mechanisms, the environment assures the consistence of 
shared data concurrently referenced by processes. 
Garbage collection and resource retrieving are also 
housekeeping functions that must be provided by the 
environment. [3] 
In our proposal, multi-paradigmatic applications are run 
under our programming environment, which provides all 
the run-time facilities mentioned above.  

mailto:joao.jose@poli.usp.br
mailto:avfreitas@imes.com.br


This paper presents an implementation proposal for a 
programming environment that provides the system calls 
that are appropriate to the interoperability among the 
application parts.  
Adaptive automata are introduced as a subjacent formal 
technique used, for illustration purposes, both in the 
implementation of one of the modules of our environment 
and as an application case study.  
The first illustrative application describes an adaptive 
implementation of one environment’s modules and the 
second one, a simple program running under our 
environment.  

2. ADAPTIVE AUTOMATA 
Adaptive automata is briefly introduced in this section in 
order to allow the reader to understand the mechanism 
chosen for the implementation of our system’s name 
manager. Details on the formalism and its properties are 
available in [6].  
Regular and Context Free languages are structurally 
simple, and may be easily accepted by popular models, 
e.g. finite-state and pushdown automata, respectively. [7] 
Structured pushdown automata [8] are special forms of 
general pushdown automata that operate as a set of 
mutually recursive finite-state-like sub-machines. In this 
model, a pushdown store is used for holding return states 
whenever a submachine calls another one. This 
arrangement is particularly useful for improving efficiency 
and readability, and is employed as an underlying model 
for adaptive automata.  
Unfortunately, there are useful languages that are not 
suitable to be accepted by structured pushdown automata. 
Adaptive automata have been proposed as a general 
formalism that has Turing-machine power, so they have 
power enough to accept virtually any language, despite its 
complexity. 
So, context-dependent languages may be modeled by 
adaptive automata, which make use of the so-called 
adaptive rules in order to dynamically modify the set of 
rules defining the automation.  
Most programming and natural languages may be 
described by means of context-sensitive formalisms, such 
as context-dependent grammars, Turing Machines, two-
level grammars, attribute grammars and many others.  
Adaptive automata [6] and adaptive grammars [11] have 
been developed in such a way that complex languages be 
described and accepted by means of formal models whose 
operation is similar to that of structured pushdown 
automata. 
While no context-dependencies are exercised by the 
sentence being recognized, adaptive automata operate as a 
structured pushdown automaton.  

Whenever any context dependency is detected, a self-
modifying adaptive action is performed which may change 
the current set of rules defining the adaptive automation.  
Afterwards, the adaptive device will use the newly 
obtained set of states and transitions, which may 
drastically change the automaton’s behavior in some 
cases. 
The self-modifying approach showed by adaptive 
formalisms allows us to propose a new paradigm for 
software construction, which handles in a natural way the 
incrementally-changing behavior of some complex 
systems, e.g. intelligent (learning) software.  
In order to illustrate the operation of adaptive automata, 
an example is given below for the implementation of an 
acceptor for the context-dependent language anbncn , n > 0.  
(sentences: abc, aabbcc, aaabbbccc,…)  
Initially the adaptive automaton has the shape depicted in 
Fig-1.  

 
Fig-1 Adaptive automaton for anbncn 

Adaptive action A is responsible for modifying the shape 
of the automaton. Therefore in response to the receipt of 
each token “a” in the prefix of the sentence being 
accepted.  
The adaptive automaton will add and eliminate adequate 
states and transitions in order to increment by 1 the 
number of both “b”’s and “c”’s accepted in sequence by 
the current set of transitions in the automaton.  
An illustrating example of step-by-step use of the 
automaton above is the recognition of the sentence 
“aaabbbccc”.  
After consuming the first “a”, the automaton evolves from 
state 0 to state 1 and remains unchanged (no adaptive 
action is executed in this transition).  
After consuming the second “a”, it executes the adaptive 
transition that brings it back to state 1, and executes 
adaptive action A, which changes the shape of the 
automaton to the configuration in Fig-2.  

 
Fig.2 – Configuration after consuming “aa” 

The next symbol “a” is then consumed and a similar 
operation is executed, resulting the configuration in Fig-3.  



 
Fig.3 – Configuration after consuming “aaa” 

The sentence may then be fully consumed by the 
automaton in this configuration, since no further adaptive 
actions are executed by the remaining transitions:  b (1→ 
3), b (3→ 5), b (5→ 6), b (6→ 4), c (4→ 2), c (2→ 9), 
and final state 9 is reached after full consumption of the 
input sentence.  

3. A PROPOSAL FOR OUR MULTI-
PARADIGM ENVIRONMENT 

In this environment, multi-paradigm applications are 
structured as sets of processes, each corresponding to a 
different module. Each module may be written in different 
languages or paradigms. Some functions, implemented as 
system calls, are provided in order to integrate 
components. Concurrency is handled through a message-
passing scheme and synchronization primitives. [9] 
By allowing the creation of new processes and their 
synchronization, the environment also provides process 
control management.  
With such an arrangement, it is advisable that applicatives 
be structured in such a way that each of its modules be 
responsible for some well-defined activity. Programmers 
must adequately insert system calls in order to guarantee 
proper execution flow.  
Data are also exchanged by means of a shared memory 
scheme whose management is performed by our 
environment.  
Explicit data transfers may be needed among processes. 
Our environment automatically provides the allocation of 
data transfer areas. System calls allow users to inform the 
system on the source, destination and nature of the data to 
be transferred.  
In order to keep track of the names needed to identify 
such data areas, the system uses the name manager 
described in section 4 and provides an adequate transfer 
protocol for the information which to be handled.  
Data type compatibility is assured by this exchange 
mechanism by means of automatic format-conversion 
operations provided by our environment.  
Of course, an adequate format must be chosen in order to 
guarantee proper data exchange among modules 
developed in different programming languages, since the 
corresponding abstract machines may work with different 
data representations.  

In the present work, a simplification was made in order to 
reduce the complexity of our prototype: no complex data 
types are supported, but a string-passing mechanism has 
been chosen instead, since, without loss of generality, any 
data type may somehow be represented in string notation.  
Anyway, all data are stored with an accompanying tag 
indicating the type it belongs to, for type-checking 
purposes at run-time.  
From the implementation viewpoint, our environment first 
performs all needed allocations of shared resources (e.g. 
shared memory, system processes). Afterwards, control is 
passed to the application and the environment sleeps until 
some request is issued by the application (e.g. data 
transfers, control requests, program activates, process 
termination, etc.) 
The data-transfer operations provided by our environment 
are listed below: 
• heap writing (updating): a statically allocated named 

data block is registered into a shared memory space, 
and its name is kept by the environment by the name 
manager described in section 4.   

• heap reading (non-destructive): a named data block is 
retrieved from the heap without changing its contents.  

• writing into an ordered dynamically allocated data 
structure: a named data block is kept by the 
environment’s name manager. Application processes 
may choose the ordering criterion to be followed by 
the retrieving operations.  

• retrieving data from an ordered data structure: The 
dynamic data area is searched according to the proper 
ordering criterion (e.g. by name) for the specified 
datum to be retrieved, and the data item is erased from 
the data structure. A garbage collection procedure is 
used for housekeeping.  

• setting, resetting and switching the value of system 
boolean variables: these operations allow 
programmers to use boolean flags for controlling the 
execution of their code. This flag data area is static, 
and their reading is not destructive. 

Type checking is performed in a very simple way, so no 
type mixing is allowed in our current prototype. However, 
future versions should implement type checking and type 
conversion, under user’s control. 
From the operational point of view, the naming and type 
checking mechanisms are very similar to link-editing 
operations performed by the system.  

Dynamic link-edition is also available in our prototype 
through the use of a set of calls to the environment system 
primitives that are responsible for import and export 
operations (whenever an application process needs to 
transfer data, these primitives are activated, and the 
corresponding data and name mapping is performed by 
the environment). 



4. AN ADAPTIVE DESIGN FOR THE 
NAME MANAGER 

The information exchange among different processes of 
the application system in our environment is more easily 
and securely performed with the aid of the environment’s 
primitive operations.  
Such interchange is provided by a parameter-passing 
mechanism that allows any of the modules of the 
applicative on the correct way data must be referred to.  
In other words, the parameter-passing mechanism allow to 
specify how each data block is identified and tagged, so 
the environment is able avoid improper operations to be 
executed on them. (although this type-checking 
mechanism may be easily implemented, it has not been yet 
added to our running prototype).  
This scheme creates a set of global names to be used by 
all modules within the application program. Obviously, 
such names must be unique in the system, so our 
environment avoids name duplication. Therefore, every 
data associated to one of these global names must be 
referenced as a pair (global name, value). Types may be 
retrieved from the data representation, since all stored 
data have an associated tag that tells its corresponding 
type.  
In order to design an adaptive implementation for our 
name manager, adaptive automata have been used. 
Obviously, there are many other ways to implement name 
managers. Our option for an adaptive design has been 
made mostly for illustrating how adaptive techniques may 
be used in practical problem resolution 
In our adaptive design, sequence of symbols in valid 
names corresponds, in an adaptive automaton, to possible 
paths from its initial state to any of its final states. Each 
transition in this automaton consumes the corresponding 
symbol from the input sequence. Common prefixes share 
the corresponding transitions of the automaton. Prefixes 
ending in any non-final state are not associated to valid 
names. All final states are tagged, indicating the 
corresponding name type. A value of the proper type is 
also associated to this state.  
Being an adaptive device, our automaton will evolve 
during its operation, so that, for all names it handles, 
prefixes accepted by the existing transitions will not affect 
the shape of the automaton, while symbols for which no 
path is found in the current automaton will create the 
lacking transition, so the automaton will evolve by adding 
new transitions in order to accept the new sequence 
thereafter.  
Therefore, throughout the operation of our environment, 
this adaptive automaton will represent all valid active 
names in the system.  
Names not needed anymore are excluded from the 
automaton by searching the associated path backwards, 
for states with more than one departing transition 

(consider final states as having a special extra departing 
transition), and eliminate all transitions with only one 
departing transition. [10] 
The following example illustrates how the name manager 
works. Starting from a single non-final state without any 
departing transitions, this adaptive automaton accepts 
sequences of letters, and incorporates transitions as 
needed to add the currently accepted sequence to the set 
of valid names in the system.  
In order to achieve such a behavior, all symbols in the 
name that have a corresponding consuming transition in 
the automaton will not change its shape, while all symbols 
not corresponding to existent consuming transitions will 
add such a transition to the automaton, and will also 
prepare the new path to accept new foreign suffixes.  
The resulting data structure depicted by this automaton is, 
of course, a growing tree whose root node is the initial 
state of the adaptive automaton, and its final states 
correspond to the leaves of the tree. The sequence of 
figures 4,5,6 and 7 illustrate the growth of this tree-shaped 
name automaton after accepting the names, abc, ad and 
ab, respectively.  

 
Fig.4 – Initial Situation 

 
Fig. 5 – Situation after consuming the name abc 

 
Fig. 6 – Situation after consuming  abc, ad 

 
Fig. 7 – Situation after consuming abc, ad, ab 

5.  RUNNING A MULTIPARADIGMATIC 
ADAPTIVE APPLICATION UNDER 
OUR ENVIRONMENT 

In this simple illustrating example, a multi-paradigmatic 
implementation of the adaptive automaton described in 
section 2 is shown, running under our environment 
prototype. The overall structure of this application is 
sketched in Fig. 8.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Besides the system modules already described in section 
3, and the name manager described in section 4, the 
functionality and structure of the modules that compose 
the application program are described in this section.   
In this case study on the implementation of adaptive 
automata, a multi-paradigm and multi-language program 
has been developed for running under our environment.  
Three major modules have been developed: an 
imperative-paradigm module, for interfacing purposes; a 
functional-paradigm, for the static part of the simulation 
process; and  a logical-paradigm, for the dynamic part of 
the simulation process.  
Shared memory is used for holding data that are used by 
more than one module. The imperative module of the 
program operates as an interface between  the program 
and the external environment.  
It is responsible for: acquiring data from input files or 
devices; analyzing the input; decomposing it into 
elementary segments classified by category; and 
performing formatting and printing operations.  
It is also responsible by the lexical analysis of the input 
stream, and by feeding the functional module with the 
tokens extracted from the input media whenever needed.  

Other operations, such as collecting statistical 
information, generating traces of the operation, and 
performing control functions have been included in this 
module as well.  
The imperative module also reads from an input device 
the description of the automaton to be simulated, and 
stores it into a shared area for being interpreted by the 
functional module, and modified by the logical module. 

The functional module of the program ha
to simulate all basic non-adaptive o
automaton being implemented. It imple
interpreter of a set of rules describin
automaton to be simulated.  
This description may either be always the
change from run to run. So, in the 
description of the desired automaton mu
to starting the simulation. This function 
the imperative module, which passes the 
from the input) to the functional module,
simulation to begin.  
Simulation operates conventionally by
description for rules that adhere 
configuration of the automaton and to the
be processed. Once a rule is selected, it 
algorithm and the result is a new confi
automaton. In the case that the selected r
adaptive actions, that may result in mod
set of rules itself, resulting a new shape 
device. Further transitions will occur by a
set of rules until another adaptive action is
The logical module of the program is 
functional module whenever an ada
requested in the simulation.  
The main purpose of this module is to 
modifying operations corresponding 
received from the functional module in 
interpretation of  an adaptive transition.  
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Fig. 9 – Modules Application Sketch 

It works by reading the currently used description of the 
automaton and performing the requested edit operations 
on the set of rules it represents.  
In order to select the proper changes to the set of rules, the 
logical module extracts the corresponding commands 
from a description of the adaptive function to be applied.  
Formal parameters are first replaced by actual arguments 
of the adaptive function being called,  then the set of 
editing commands is applied to the set of current rules.  
After being updated, the set of rules describing the new 
shape of the adaptive automaton is released for use, and 
command is passed back to the functional module for 
proceeding with the simulation. 
Errors and malfunctions in the program are reported by 
the imperative module whenever detected by any of the 
modules that simulate the adaptive automaton.  
In the cases that some module detects any error situation, 
that module will activate the imperative module by 
sending to it a request for reporting the error situation.  

6.  CONCLUSIONS 
Multi-paradigm and multi-language programming allow 
developers to flexibly express the implementation of their 
application programs by using a mix of different 
languages and even paradigms.  
Among the advantages of this technique we can mention: 
Programmers are allowed to use the most important 
features of each language and paradigm; They are able to 
choose the most adequate language for each part of the 
application being developed. In the case multiple 
programming groups are used in the development of the 
project, the best of the skills and knowledge in each team 
may be used in the development of the final product. 
In the work described in this paper, a prototype of such a 
programming environment has been used as a reference, 

and adaptive automata have been employed as a formal 
mathematical model in two very different situations: in the 
development of the name manager of the environment and 
in the construction of a multi-language and multi-
paradigmatic application case study that implements an 
adaptive acceptor for the famous context-sensitive 
language anbncn.  
Besides validating most of the initially proposed 
arguments, these experiments have confirmed the 
effectiveness of both the multi-paradigmatic/multi-
language approach in programming and the adaptive 
techniques used to implement solutions for complex 
problems. 
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