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Abstract. This paper impose further discipline to the use of adaptive
automata [Jos94], [Iwa00] by restricting some of their features, in order
to obtain devices that are easier to create and more readable, without
loosing computational power. An improved notation is proposed as a
first try towards a language for adaptive paradigm programming.
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1 Introduction

In [Jos01], the structure and the operation of adaptive rule-based devices have
been formally stated. Structured pushdown automata [Jos93] are a variant of
classical pushdown automata, in which states are clustered into mutually recur-
sive finite-state sub-machines, which restrict the usage of the control pushdown
store to the handling of return states only. Adaptive automata are self-modifying
rule-driven formalisms whose underlying non-adaptive devices are the structured
pushdown automata. Structured pushdown automata are fully equivalent to clas-
sical pushdown automata.

However, despite these features, adaptive automata sometimes lack simplic-
ity, turning them difficult to understand and maintain.

The proposal described in this paper imposes some restrictions to the use of
the features of the model in order to obtain devices that are easier to create and
understand, without loosing any of the their original computational power.

2 Adaptive Automata

In order to Adaptive automata perform self-modification, adaptive actions at-
tached to their state-transition rules are activated whenever the transition is
applied.

The Underlying Structured Pushdown Automata. A finite-state automa-
ton is composed of a set of states, a finite non-empty alphabet, a transition
function, an initial state and a set of final states. Transitions map ordered pairs
specifying the current state and the current input symbol into a new state.
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There are two types of transitions from state A to state B:
(a) Transitions (A,α)→ B, which consume an input symbol α; and
(b) Empty transitions (A, ε)→ B, which do not modify the input.

A structured pushdown automaton also exhibits a set of states, a finite non-
empty alphabet, an initial state, a set of final states, a pushdown alphabet and a
transition function, including internal transitions, like those shown for finite-state
automata, and external transitions, responsible for the calling and returning
scheme. Beside the two types of internal transitions, sub-machines allow special
call and return transitions:
(a) Transitions (A, ε) → (↓ B,X) from state A, calling a sub-machine whose
initial state is X. B is the return state, to which the control will be passed upon
a return transition is performed by the called sub-machine. B is pushed onto the
pushdown store when these transitions are executed.
(b) Transitions (C, ε)→ (↑ B,B) from some state C in the current sub-machine’s
set of final states. State B, which represents any state tha has been previously
pushed onto the pushdown store by the sub-machine that called the current one,
is popped out of the pushdown store and the caller sub-machine is then resumed
at the popped state.

The Adaptive Mechanism. Adaptive actions change the behavior of an adap-
tive automaton by modifying the set of rules defining it. In adaptive automata,
the adaptive mechanism consists of executing one adaptive action attached to
the state transition rule chosen for application before the rule is performed, and
a second one after applying the subjacent state transition rule.

The adaptive mechanism of adaptive automata is described in [Jos01]: it is
defined by attaching a pair of (optional) adaptive actions to the subjacent non-
adaptive rules defining their transitions, one for execution before the transition
takes place and another for being performed after executing the transition.

At each execution step of an adaptive automaton, the device’s current state,
the contents of the top position in the pushdown storage and the current in-
put symbol determine a set of feasible transitions to be applied. In deterministic
cases, the set is either empty (no transition is allowed) or it contains a single tran-
sition (in this case, that transition is immediately applied). In non-deterministic
cases, more than one transition are allowed to be executed in parallel. In sequen-
tial implementations, a backtracking scheme chooses to apply one among the set
of allowed transitions.

Adaptive actions are formulated as calls to adaptive parametric functions.
These ones describe the modifications to apply to the adaptive automaton when-
ever they are called. These changes are described and executed in three sequential
steps: (a) An optional adaptive action may be specified for execution prior to
applying the specific changes to the automaton. (b) A set of elementary adap-
tive actions specifies the modifications performed by the adaptive action being
described. (c) Another optional adaptive action may performed after the specific
modifications are applied to the automaton.

Elementary adaptive actions specify the actual modifications to be imposed
to the automaton. Changes are performed through three classes of adaptive
actions, which specify a transition pattern against which the transitions in use
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are to be tested: (a) Inspection-type actions (introduced by a question mark in
usual notation), which search the current set of transitions in the automaton for
transitions whose shape match the given pattern (b) Elimination-type adaptive
actions (introduced by a minus sign in usual notation), which eliminate from the
current set of transitions in the automaton all transitions matching the given
shape. (c) Insertion-type adaptive actions (introduced by a plus sign in usual
notation), which add to the set of current transitions a new one, according to
the specified shape.

The adaptive mechanism turn a usual automaton into an adaptive one by
allowing its set of rules to change dynamically.

3 Improving the Formulation of Adaptive Automata

In this section we discuss some of the main drawbacks of the traditional version of
the formalisms used for representing adaptive automata in previous publications.

The Notation. The notation used to represent adaptive automata is the first
source of drawbacks to be considered in our study, for the simplicity of the
model relies on the use of notations with the adequate features: a good notation
is expected to be at least compact, simple, expressive, unambiguous, readable,
and easy to learn, understand and maintain.

The notations for adaptive automata and structured pushdown automata
generally differ in details, but there are two main classes of notations: graphical
ones, are better for human visualization, and symbolic ones, which are more
compact and machine-readable.

We compared notations still in use, and chose an algebraic and a graphical
one, according to their characteristics and functionality:

Transition type Symbolic notation Graphical notation
Transition consuming α (A,α)→ B ©A −→α ©B

Empty transition (A, ε)→ B ©A −→ε ©B

Initial state Explicitly indicated →©
Final state Explicitly indicated

⊙

For structured pushdown automaton, the final choice preserves the nota-
tion established for finite-state automata to denote internal transitions in sub-
machines. The symbol ε (the empty string) has been preserved in both finite-
state and structured pushdown notations in order to maintain compatibility
with traditional well-established notations. The following table adds notation
for expressing (empty-transition) sub-machines calls and returns:

Transition type Symbolic notation Graphical notation
Call sub-machine X from

state A, returning to state B
(A, ε)→ (↓ B,X) ©A =⇒X ©B

Return to state R after
executing the called sub-

machine X in its final state C

(C, ε)→ (↑ R,R)
for all possible R
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For adaptive automata, all transitions not calling adaptive actions are de-
noted as stated above. Adaptive transitions make reference up to a pair of adap-
tive actions, B (before-action) and A (after-action). Their notation is summa-
rized in the table below.

A restriction on the transitions to which adaptive actions may be attached,
restricts them to be attached to internal transitions only avoiding superposition
of the effects of two different sources of complexity in the same transition rule.

Transition type Symbolic notation Graphical notation
Adaptive transition with “before”

adaptive action attached
(A,α)→ B[B•] ©A −→αB• ©B

Adaptive transition “after”
adaptive action attached

(A,α)→ B[•A] ©A −→α•A ©B

Adaptive transition with both
adaptive action attached

(A,α)→ B[B • A] ©A −→αB•A ©B

In the general case, adaptive actions B and A are representations of paramet-
ric calls to adaptive functions, which have the general form M (p1, p2, . . . , pn)
where p1, p2, . . . , pn are n arguments passed to an adaptive function named M .

Adaptive actions are symbolically declared apart from the adaptive automa-
ton, and they comprehend a header and a body. In the header, the name and
the formal parameters of the adaptive function are defined, followed by a section
in which the names of all variables and generators are declared.

The body part is formed by an optional adaptive function call to be executed
on entry, followed by a set of elementary adaptive actions, responsible by the
modifications to be performed. A furhter optional call specifies another adaptive
function to be executed on exit. Both calls are denoted in the usual way, as
mentioned above.

There are three types of elementary adaptive actions: insertion, elimination
and inspection actions. The notation chosen for the elements of the declaration
of an adaptive function is shown in the table below. No graphic notation is yet
suggested for adaptive functions.

Element of the declaration Symbolic notation
Adaptive function name M

Parameters (p1, p2, . . . , pn)
Variables v1, v2, . . . , vn

Generators g∗1 , g
∗
2 , . . . , g

∗
n

Inspection actions ? [ pattern ]
Elimination actions – [ pattern ]

Insertion actions + [ pattern ]
Pattern Any transition

Graphical notations have been tried [Alm95] that showed to be effective in
some particular cases, where the self-modifications to be performed are small and
easily visible. It is difficult to represent graphically the operation of adaptive
functions in their full generality. We chose to adopt symbolic descriptions for
adaptive functions, even when graphical notation is used to describe the adaptive
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automata they refer to. In order to provide an acceptable notation for dealing
with sets and predicates, we chose to adopt the usual notation of predicate
calculus, including quantifiers, for expressing adaptive functions.

The Underlying Model. The underlying model for adaptive automata is the
structured pushdown automaton. Sub-machines may be considered as improved
finite-state automata that are allowed to recursively call each other. The best
feature of this arrangement is that structured pushdown automata turn out to
be easier to design and understand than pushdown automata.

Pushdown machines may be considered excessively complex for some applica-
tions, for which finite-state automata have being used successfully. In these cases,
some means should be provided to avoid the presence of unnecessary features in
the underlying non-adaptive automaton.

In the special cases for which a simple finite state mechanism is enough, we
may suppress the pushdown storage from the notationm reducing the remaining
sub-machine into a simple finite-state machine.

The device resulting from the suggested simplification becomes an adaptive
finite-state automaton, and may be formally stated just as published before in
section 4 of [Jos01].

The Adaptive Mechanism. The principle of this mechanism consists in mod-
ifying the set of rules of the adaptive automaton by performing two adaptive ac-
tions, one before and another one after executing the underlying state-transition
rule. However, one may ask whether a pair of adaptive actions is really a need. A
element that substantially contributes to harden understanding adaptive devices
is the structure of the adaptive functions themselves.

Adaptive functions are allowed to perform a pair of adaptive actions, one
before and another after the modifications the adaptive function is expected to
perform.

The set of parameters allowed in adaptive functions is another feature that
is questionable when we search for simplicity: is it really needed to allow an
arbitrary number of parameters? Should it be better to limit the number of
parameters to a minimum? What should this minimum be? Should adaptive
functions have no parameters at all? In the case of allowing parametric adaptive
functions, should parameter types be controlled instead of arbitrarily chosen?
Should adaptive functions be allowed as parameters?

Elementary adaptive actions are another source of complexity, since no re-
strictions are imposed to their use. Some questions may be posed concerning
these elements of the formulation of adaptive automata: Should multiple vari-
ables be allowed in inspecting and eliminating elementary adaptive actions?
Should looping be allowed within elementary adaptive actions?

In the following text we propose answers to several questions posed here,
with the intent of achieving for adaptive automata a formulation according to
our simplicity goals.

Adaptive Actions. In adaptive automata, this adaptive mechanism consists
of executing the pair of adaptive actions attached to a rule at the time it is chosen
for application. The first adaptive action in the pair is executed before the rule is
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performed, while the second one is executed after applying the subjacent state-
transition rule. We limit to one the number of adaptive actions attached to the
corresponding subjacent rule. Indeed, [Iwa00] shows a proof for the following
theorem, stating that there is no need of attaching a pair of adaptive actions per
rule, but the use of a single one is enough.

Theorem 1. The result of the execution of any adaptive action is equivalent to
a non-empty sequence of elementary adaptive actions.

Proof. This theorem is fully demonstrated in [Iwa00] by simulating the device
with the specified restrictions. ��

Further simplifications may be achieved by using the following theorem:

Theorem 2. For each rule defining an adaptive automaton, there is an equiva-
lent set of rules, all of which have at most one attached (after-) adaptive action.

Proof. This theorem may be proved by using the previous one and by showing
that each adaptive transition having an attached before-adaptive action may
be decomposed into a sequence of two simpler ones: the first one is an empty
transition having as its attached after-adaptive action the before-adaptive action
in the original transition; the second one is a copy of the original transition, from
which the before-adaptive action has been removed. ��

Theorem 3. For each adaptive function that calls a pair of attached adaptive
actions there is an equivalent set of simpler adaptive functions, all of which have
at most one attached (after-) adaptive action.

Proof. The proof of this theorem follows from the result of the previous one, and
is based on showing that each adaptive function F that calls a before-adaptive
action B may be decomposed into a sequence of two simpler ones in the following
way: F becomes a copy of B’s body, followed by a call to an auxiliary function F1,
where F1 is a copy of F from which the call to B has been removed. ��

4 Improving the Formulation of the Underlying Model

Structured pushdown automata use their pushdown store in two extremely lim-
ited situations, in which no symbol is consumed from the input string: (a) when
a sub-machine is called, the return state is pushed onto the pushdown store be-
fore control is passed to the starting state of the sub-machine being called, and
(b) when a sub-machine finishes its activity, a return state is popped from the
pushdown store, and a return is made to that state in the calling sub-machine.

In this section we propose some changes to the underlying structured push-
down automata. These suggestions rely on the following theorem.

Theorem 4. Adaptive (structured pushdown) automata are equivalent to adap-
tive finite-state automata.
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Proof. Proving that an adaptive structured pushdown automaton may simulate
an adaptive finite-state automaton is straightforward. The opposite clause of the
theorem is proved by simulating the pushdown store with states and transitions
of adaptive finite-state automata. The resulting model allows performing the
same work without using explicit memory. Such simulation may be sketched in
three steps:

– We can suppose, without lost of generality, that all sub-machines in the
adaptive automaton have single initial and final states.

– For sub-machines that are not self-embedded, substituting all sub-machine
calls by an equivalent empty adaptive transition is enough. Indeed, if a calling
sub-machine N invokes submachine M , we replace the following adaptive
transition in N :

©q −→α•A(q) ©p

for the original sub-machine call:

©q =⇒M ©p

where ε is the empty word and •A(q) is an adaptive function which performs
a macro expansion of the call to sub-machine M by replicating its topology
in the exact place where the former call was, in such a way that the initial
state of submachine M is reached, by a unique empty transtition from state
q and the state p is reached by a unique empty transition from the unique
final state of M . Note that the adaptive function •A is executed only once.
Such replacements finishes in a finite number of steps since, by hyphotesis,
there are no self-embedding in M .

– If any sub-machine in the adaptive automaton is self-embedded, then it
suffices to substitute every self-sub-machine call (top of the following table)
by the adaptive transition (bottom of the table). Rhombuses represent the
body of sub-machine M :
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Where, again, the ε is the empty word but now •A is an adaptive function
with the following effect shown in the last box.

Note that this adaptive function duplicates the sub-machine topological
structure and the states q0, q1, q and p. It must be clear, also, that this process
can be a non-stopping one, but anyway it is a safe way to simulate the adaptive
(structured pushdown) automata with an adaptive finite-state automata. ��

Improving the Formulation of the Adaptive Mechanism. The adaptive
mechanism is indeed an important source of complexity in the formulation of
adaptive automata which may be simplified in several aspects, some of which
are the following: (a) by limiting to one the number of adaptive actions attached
to each rule and/or called inside adaptive functions (b) by restricting the na-
ture and number of parameters allowed for adaptive functions (c) by avoiding
multiple variables to be inspected at the same time in a single inspection (d)
by avoiding loops within elementary adaptive actions (e) by avoiding adaptive
functions passed as parameters. Unfortunately, if we impose too much simplifi-
cations to the formulation, it becomes less expressive, requiring more clauses to
perform the desired effect. However, by restricting the formulation, simpler facts
are expressed by each adaptive action, rendering the formulation easier to un-
derstand. The hints above surely help searching for a cleaner and more effective
formulation. This is a challenge yet to be overcome.

5 Illustrating Example

In this section, we chose a Non-deterministic Adaptive Finite Automaton, and
used it to solve the well-known string-matching problem of determining whether
a given string is a sub-string of some text. One classical solution for this problem
is as follows: (a) Create a non-deterministic finite-state automaton that solves
the problem. Constructing such automaton is straightforward: at its initial state,
a loop consumes any symbol in its alphabet; next, a simple path consuming the
sequence of symbols in the string we are looking for, and, at the end of this
path, a unique final state consumes any further alphabet symbols. The explicit
non-determinism in this automaton is located at the beginning of the path that
accepts the required pattern. (b) Use a standard method to eliminate the non-
deterministic transitions in the automaton. (c) Use a standard algorithm to
minimize the resulting deterministic automaton.

In [Hol00] an algorithm is presented that constructs directly the desired de-
terministic finite-state automaton; it has the advantage of eliminating the need
to eliminate non-deterministic transitions, since the complexity of this process
is exponential. Additionally, in this method the full automaton must be con-
structed and minimized a priori.

Our approach avoids the exponential transformation, and does not re-
quire any unnecessary a priori work: we start from an initial adaptive non-
deterministic finite-state automaton and let it process a text sample; whenever
a text being analyzed activates a non-deterministic transition, the execution of
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the corresponding adaptive function performs the required topological transfor-
mations in order to render it deterministic. By doing so, our approach uses an
incremental strategy to force them to perform in a deterministic way all transi-
tions they execute, without changing the remaining non-deterministic transitions
present in their formulation.

5.1 An Exact String Matching Non-deterministic FSA

Here we follow [Hol00]; the straightforward non-deterministic finite-state au-
tomaton is constructed for accepting the pattern aba, over the alphabet Σ =
{a, b} :

Fig. 1. A non-deterministic finite-state automaton

Fig. 2. Eliminating non-deterministic transitions.

5.2 An Equivalent Adaptive FSA for Exact String Matching

Now, let us turn the attention to our adaptive approach. In figure 2 (left) a non-
determinism is present. In order to remove such non-determinism, we introduce
a new state (fig. 2, right).

Now, in order to make it reachable, from the newly created state, all states
that were reachable through all transitions departing from the conflicting states,
we add further transitions leaving the new state and arriving to the target states,
consuming the appropriate symbols, as shown in fig. 3. These operations may
be sketched as an adaptive function B, in fig. 4.

This adaptive function receives a state and a token as parameters. In this
formulation, it declares three variables and one generator; in line 3 quantifiers are
used to allow testing whether there is more than one transition departing from
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Fig. 3. Inserting transitions connecting the new state to the automaton

1 B(q, σ) = { declaring name and
parameters of B

2 p, n∗, r, a;
declaring variables
(n is a generator)

3 (!p)(?[(q, σ)→ p]){ only if there are more than
one rule with this shape,

4 +[(q, σ)→ n]
add a new transition with
his shape with destination n

5 (∀p)(?[(q, σ)→ p]){ for all transitions emerging
from state q

6 (∀a)(∀r)(?[(p, α)→ r]){+[(n, α)→ r]} insert corresponding
transitions departing from n

7 −[(q, s)→ p]}}} after all insertions, remove
the original transition

Fig. 4. Adaptive function B that dynamically eliminates non-deterministic transitions
from our non-deterministic adaptive finite-state automaton

the state received as the first parameter, and consuming the symbol received
as the second parameter; if the answer is negative, then the query (the clause
introduced by a question mark in this notation) will produce an empty result,
and in this case the clause in braces (comprehending lines 4, 5, 6, 7) will not
be executed. Otherwise, in line 4 a new transition is created from the current
state to a new one, by means of generator n. Line 5 states that for each output
transition, a proper output transition is generated and the original transition
is deleted. The resulting adaptive non-deterministic finite-state automaton is
shown in figure 5.
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Fig. 5. Adaptive non-deterministic finite-state automaton

6 Conclusions

The proposed simplification to the formulation of adaptive automata seems to
be reasonably expressive, compact and readable, allowing them to be stated in
a rather intuitive form. Most features and development practices already estab-
lished are preserved and respected to a large extent.

The proposed formulation caused almost no impacts to the power of adaptive
automata, so the net result of its use will be a significant increase in the readabil-
ity and soundness of the formulation without loss of the devices computational
power.

From the programming point of view, our proposal has also advantages over
the earlier notations, allowing programmers to build and debug adaptive au-
tomata in a more expedite way, resulting better products and a far better doc-
umentation.
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[Jos93] José Neto, J. Contribuição à metodologia de construção de compiladores. São
Paulo, 1993, 272p. Thesis (Livre-Docência) Escola Politécnica, Universidade
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