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Abstract 
Software specifications may be viewed as theories elaborated for 
application domains. A useful strategy for building 
specifications is the incremental extension of an initial theory, in 
which increments add new terms and notions not considered in 
previous extensions. Given an increment, the corresponding 
theory is stated in a corresponding specification language. The 
next increment – or extension of the theory – typically requires a 
related language extension. Adaptive devices naturally support 
such scheme, whose instances should reflect the impact of 
extension variations on the specification language. This paper 
describes an adaptive framework for the design of a class of 
software specification languages supporting the incremental 
process of elaborating software specifications. 

1 Introduction 
Software engineering strives to provide practitioners with 
principles that help building reliable software systems. 
One of the best-known principles concerns the elaboration 
of software specifications to bridge the gap between 
software requirements and their implementation in some 
programming language. It is not the case of discussing the 
rich debate about this issue, but it is worth mentioning 
some lessons learned from the use of specification 
languages in the traditional sequential program 
construction viewpoint1. Firstly, the use of a formal 
specification language, guided by some formal method, 
does not guarantee the correctness of the software system 
under construction [1], but specification languages with a 
formal basis increase our understanding of the 
specification by allowing the detection of inconsistencies 
and ambiguities. Secondly, a specification should support 
extensions, and should also exhibit operational 
capabilities [2]. We are interested in these latter features 
as the main drivers of specification language design. The 
novelty of our approach is the use of an adaptive device 
[3] in the specification language design, supporting the 
realization of those desirable features. The motivation for 
using the adaptive device approach is that such devices 
                                                           
1 In this paper, we are not considering the component based 
software construction approach, i.e., the reuse in-the-large. 

naturally solve the realization problem. Section 2 presents 
the adopted viewpoint for specifications and specification 
languages. Sections 3, 4 and 5 describe our strategy to 
extend a specification (programming) language, and 
present simple examples. Section 6 draws some 
conclusions. 

2 Specifications and Specification Languages 
Software specifications may be viewed as theories 
presentations elaborated for application domains. It is 
expected that the resulting working program be derived 
from its specification through a finite series of step-by-
step transformations extending the base theory, i.e. the 
original specification [4]. Fundamental definitions 
underlying this approach may be found elsewhere [5, 6], 
to mention a few. We will briefly quote and synthesize the 
core definitions of [4], with respect to theory and 
language extensions. 
• Since specifications and programs are linguistic 

constructs, they must be expressed in a defined 
linguistic system. A linguistic system consists of two 
parts: a collection of well-formed sentences, and a 
code of reasoning. Formally, LS = <LLS, �LS>, where 
LLS denotes the linguistic system language and �LS 
denotes the rules of reasoning of the LS. 

• A theory T in a linguistic system LS is a set of LS 
formulae, which is closed under �LS. A theory 
presentation is an axiomatization of the theory, i.e. a 
set of formulae from which all formulae of T can be 
derived by means of the derivability relation �LS. 
Formally, T = <LST, AT>, where LST is the linguistic 
system of T and AT is the presentation of T.  

• An LS’ = <LLS’, �LS’> is an extension of LS = <LLS, 
�LS>, iff LLS � LLS’ e �LS � �LS’. If two theories are 
expressed in the same LS, their respective languages 
and presentations, leaving the underlying linguistic 
system implicit, can characterize them. Formally, 
T = <LT, AT> e T’ = <LT’, AT’>. 

• A theory T’ is an extension of T, i.e. T � T’, iff the 
properties defined by T for the symbols of LT are still 
there in T’, and T’ allows the proofs of some new 
properties.  



• An extension T � T’ is conservative iff for all 
formulae A of LT, if AT’ �SL’ A, then AT �SL A. 

A program can also be viewed as a theory presentation 
with an underlying linguistic system, but due to the 
operational nature of programming languages there is a 
bias of the theory presentation towards a particular 
interpretation (a particular implementation) [4]. In other 
words, a program is a specification of another program 
written, say, in some machine language.  
In brief, the program construction process is a series of 
conservative incremental extensions of an initial theory, in 
which increments add new terms and notions not 
considered in previous extensions, while preserving the 
properties included at each step. Given an increment, the 
corresponding theory is stated in a corresponding 
specification language. The next increment – or extension 
of the theory – typically requires a related language 
extension. To meet this requirement, the specification 
language should be extensible. Does this property imply 
writing a new compiler? Or would it be better using a 
purely syntactic extension based on the semantics of an 
appropriate existing language? We take the latter 
approach as the main strategy for the design of software 
specification languages. 
In this paper, we illustrate this strategy with a very simple 
example. Let the following operation be a fragment of a 
theory presentation on integers, written in an imperative 
Pascal-like programming language: 
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER; 
      START 
      divide:= n/d 
      END; 

Let us suppose we want to extend the theory with the 
notion of preconditions as of the design by contract 
approach [7]. This approach states that the function 
invocations at any point in a program must satisfy the 
precondition specified for the function. That means the 
programmer will not write explicit defensive code in order 
to check the precondition in the function body, because 
the respect for the precondition is an obligation for the 
client of certain service, not for the supplier of that 
service. The precondition specification for the above 
fragment may be written as: PRE d <> 0, where PRE 
denotes a precondition. This theory extension implies a 
language extension. 

3 Extending Programming Languages 
Let us sketch a proposal for extending programming 
languages as an intermediate goal towards the extension 
of software specifications. Our main intent is keeping the 
specifications executable. Starting from an available 
programming language, one is allowed to employ in the 
desired software specification strictly the abstractions 

provided by the host language’s syntactic constructs. 
When this is a syntactically extensible language, users 
may create new syntactic constructs for representing 
abstractions not included in the original notation, so users 
may represent new abstractions in terms of existing ones. 
By proceeding in a hierarchical way, successive 
abstraction layers of increasing complexity may be built in 
order to bring the expressiveness of the language closer 
and closer to the domain of the particular software being 
specified. Since each layer’s abstractions are stated 
strictly as combinations of previously defined 
abstractions, at each specification step any software will 
be easily translated into the immediately preceding layer’s 
abstractions, until reaching the lowest level abstraction 
layer, represented by the host programming language. 
With such a simple approach, specifying a software is 
reduced to specifying a sequence of successive 
abstractions, which are directly mapped into 
corresponding language syntactical extensions and their 
associate translating scheme into the abstractions defined 
in previously defined abstraction layers. This process 
proceeds until the set of available abstractions match the 
expressiveness requirements for defining the application 
software in terms of the application domain’s abstractions. 
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The main feature of this approach is keeping the 
specifications executable all along the development 
process. No semantic gaps are introduced between the 
specification and its implementation, since all 
specification steps may be immediately converted into 
executable code, and no abstraction is created unless it be 
strictly stated in terms of existing, executable ones. 
By adequately choosing the host programming language, 
one may significantly reduce the need for supporting 
computing resources for implementing this approach. For 
instance, if L0 is an already existing extensible language 
(e.g. LISP) all one must do is to define the abstractions 
needed as extensions of L0 (in the case of LISP, the 
extensions take the form of either macros or functions). 
On the other hand, when L0 is not already extensible, then 
an extension feature must be added in order to allow 
following the proposed approach. 
For usual non-extensible procedural host languages, it is 
possible to implement a language extension additional 
layer in order to provide the needed facilities for 
programmers to provide their language extensions as 
definitions for new abstractions. A powerful way to allow 
the inclusion of extra abstractions in a given language is to 
offer some meta-linguistic feature for allowing to define 
new syntactical constructs. In our case, Wirth’s context-
free extended BNF notation has been chosen [8]. That is 



enough for defining new syntax. Processing and 
incorporating such user-defined syntactical extensions as a 
preprocessor for the host language compiler is quite 
straightforward [9]. However, syntax is not all we need. It 
is necessary to state all extensions in terms of already 
existing language constructs. In order to overcome this 
problem, we adopted another well-known solution, e.g. 
typifying the extensions and using classical operational 
semantics for interpreting each new construct in terms of 
existing ones: each new extension is declared as a context-
free grammar, and its meaning is also declared as a text 
stated as a program using the basic host language syntax 
enriched with previously declared syntactical constructs.  
In this way, the compiler is informed on the new construct 
to be further accepted, as well as on how exactly it must 
be translated into lower-level abstractions. After accepting 
such an extension definition, the compiler extends its 
acceptor in order to recognize the new syntax, and 
associates the declared translation procedure to the 
syntactical recognition of the new construct. Whenever 
further input text contain excerpts that follow the new 
defined syntax, its related translation procedure is 
followed, converting the input text in the extended 
notation into another text written in the previous 
abstraction level. 

4 A Very Simple Extension Layer 
In this section we present a simplified proposal of a 
nucleus for an extension mechanism, to be used as a 
preprocessor for procedural, originally non-extensible 
languages. For space reasons, the host language has been 
reduced to a minimum: block structure has been removed, 
declarations have been reduced to simple untyped 
variables, and commands have been eliminated, except for 
if’s, go to’s and assignments of simple expressions. 
The following context-free grammar, stated in modified 
Wirth’s notation, defines, in its first part, the (non-
extensible host language) nucleus L0 we are going to use 
as the starting version of our extensible language, and in 
its second part, the proposed extension mechanism, 
represented by EXT. Each time the non-terminal EXT is 
instantiated, it extends the previous version of the 
language by adding a new non-terminal (NEWNTERM) to its 
grammar, and incorporates the corresponding abstraction 
to the language syntax. Note that TERM represents any 
terminal in the language, including identifiers (id), 
integers (int) and other elementary language components.   
//* HOST LANGUAGE (EXTREMELY SIMPLIFIED) *// 
PROG = “BEGIN” ( DECL \ “;” ) “START” ( COM \ “;” ) “END” . 
DECL = “VAR” ( id \ “,” ) “:” “INTEGER” | PROCEDURE | EXTENSION . 
COM  =  LABEL “:” PROG  | id := EXPARIT | “GOTO” LABEL | 
        “IF” EXPARIT ( “>” | “=” | “<” | “<>” ) EXPARIT  

           “THEN” PROG ( “ELSE” PROG | ε ) | PREVIOUSNTERM . 
EXPARIT = (( id | int | CALL ) \ ( “+” | “-” | “*” | “/” )) . 
CALL = id “(” ( id | int | CALL  \ “,” ) “)” . 

PROCEDURE = “FUNCTION” id “(” ( id “:” “INTEGER” \ “;” ) “)”  
                      “:” “INTEGER”  “;”  

                      “START” ( COM \ “;” ) “END” “;” . 
LABEL = id . 
 

//* PROPOSED EXTENSION MECHANISM *// 

PREVIOUSNTERM  =  ∅∅∅∅ . 

EXTENSION = “DEFINE” NEWNTERM “:” “NEW” NTERM “AS” WIRTHMOD  
                        “MEANING” PREVIOUSWIRTHMOD “ENDDEFINE” . 
NTERM = “PROG” | “DECL” | “COM” | “EXPARIT” | “EXTENSION”  
      | “LABEL” | “NTERM” | “CALL” | “PROCEDURE” | “NEWNTERM”  

      | “WIRTHMOD” | “PREVIOUSWIRTHMOD” | PREVIOUSNTERM . 
NEWNTERM = id . 

WIRTHMOD = ((( TERM | NTERM | NEWNTERM | “ε”  
         | “(” WIRTHMOD ( “\” WIRTHMOD  | ε ) “)” )  
            ( “#” int | ε ) \ ( “|” | ε  ) ) . 
PREVIOUSWIRTHMOD = ((( TERM | NTERM | “ε”  
        | “(” PREVIOUSWIRTHMOD ( “\” PREVIOUSWIRTHMOD | ε ) “)” )  
      ( “#” int | ε ) \ ( “|” | ε  ) ) . 

The interpretation of the above grammar is almost 
conventional, except for the meta-symbol ∅∅∅∅ that refers to 
the empty set: initially there are no PREVIOUSNTERMs. After 
the full handling of the declaration of an EXTENSION the 
name corresponding to the NEWNTERM being declared is 
added to the PREVIOUSNTERMs set of already defined non-
terminals of the grammar. So, WIRTHMOD refers to some 
syntactical definition involving any terminals or non-
terminals, while PREVIOUSWIRTHMOD represents a syntax 
strictly stated in terms of the non-terminals representing 
abstractions known at the previous extension’s abstraction 
layer. The extension pre-processor must adequately 
update the set of PREVIOUSNTERMs in order to keep the 
integrity of this mechanism. 

5 Illustrating Case Studies 
For illustration purposes, let us first work the small 
situation referred to at the end of section 2. Let us restrict 
the extension to including in the language the declaration 
of preconditions. The suggested syntax has been starting 
the construct with the word “PRE” followed by a condition 
(in the case of our language, conditions may be defined in 
terms of the relation between two arithmetic expressions), 
exercising some of the previously described features. In 
order to explore the extensibility feature introduced by the 
preprocessor, the programmer should declare the desired 
new syntax as shown below. 
In words, the denominator of the division will be 
automatically checked against zero every time the 
function divide is called, and an error report will be 
generated whenever that condition succeeds. 
DEFINE PRECONDITION: NEW COM AS 
   “PRE” EXPARIT # 1 ( “=” | “<” | “>” | “<>” ) EXPARIT # 2  
MEANING 
   “IF NOT (” EXPARIT # 1 ( “=” | “<” | “>” | “<>” ) EXPARIT # 2  

“) THEN ERROR() ELSE” 
ENDDEFINE; 
... 
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER; 
      START 
      PRECONDITION d <> 0; 
      divide:=n/d 
      END; 
... 



In terms of our preprocessor, its behavior may be 
identified in the generated expanded code as follows: 
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER; 
      START 
      IF NOT ( d <> 0 ) THEN ERROR () ELSE divide:=n/d 
      END; 

The next is another simple illustrating one referring to the 
creation of new commands. Through such a feature, it is 
easy to create new abstractions from already existing 
ones. For instance, the next declaration adds a WHILE 
statement to our host language: 
DEFINE WHILESTATEMENT: NEW COM AS 
   “WHILE” EXPARIT # 1 ( “=” | “<” | “>” | “<>” ) EXPARIT # 2  
   “REPEAT” PROG # 3 
MEANING 
 “LOOP#: IF”  EXPARIT # 1 ( “=” | “<” | “>” | “<>” ) EXPARIT # 2  
        “THEN BEGIN” PROG # 3 "; GO TO LOOP# END”  
ENDDEFINE; 

In this case, note the meta-label LOOP# that must be 
instantiated each time a WHILESTATEMENT is called, in 
order to avoid label duplication in the resulting program.  
For instance, the WHILESTATEMENT below: 
WHILE x < 3 REPEAT BEGIN x := x+1; y:= y-1 END 
is expanded into the following equivalent program, 
according to the template previously defined: 
LOOP0001: IF x < 3 THEN BEGIN  
                        BEGIN x := x+1; y:= y-1 END;  
                        GO TO LOOP0001  
                        END  

The host language must at least provide the full set of 
primitive constructs needed to specify all operations in the 
program we intend to build. If it is not the case, then it 
would not be possible to express the application program 
facts in terms of the available host language’s basic 
syntactic constructs, unless some extra effort be made in 
order to provide the missing facilities for the host 
language before the desired extensions are created and 
used. 

6 Conclusions 
Obviously, there is much more to say about using 
extensible features of a programming language in order to 
ease the specification of software projects than what one 
is allowed to fit into a four-page paper. Programming 
language extensibility and operational semantics have not 
received adequate attention in recent scientific works. 
However, as we tried to show in this paper, their features 
allow an easy way for implementing software directly 
from specifications, in a bottom-um fashion, always 
keeping the specifications executable, and eliminating the 
deep gap between specifications and implementation, 
usually found in current software engineering practices. 
Using adaptive technology in the implementation of 
compilers and preprocessors substantially reduces the 
difficulty of implementing languages representing multi-
layers of abstractions by allowing the user to interact with 
the kernel of the host language’s compiler without 
opening its source code. Such great feature is 

accomplished by the unification got when using adaptive 
automata as the language’s run-time abstract machine.  
In this way, adaptive automata may be generated both as 
object-code, and as a syntax recognizer, so programs may 
be compiled, their syntax may be modified and they also 
may be easily executed in the same unified framework 
provided by the underlying adaptive environment. 
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