
An Adaptive Framework for the Design of Software Specification Languages

J. J. Neto, P. S. Muniz Silva

Department of Computer and Digital Systems Engineering,
Polytechnic School of the Sao Paulo University, Brazil

E-mail: {joao.jose, paulo.muniz}@poli.usp.br

Abstract
Software specifications may be viewed as theories elaborated for
application domains. A useful strategy for building
specifications is the incremental extension of an initial theory, in
which increments add new terms and notions not considered in
previous extensions. Given an increment, the corresponding
theory is stated in a corresponding specification language. The
next increment – or extension of the theory – typically requires a
related language extension. Adaptive devices naturally support
such scheme, whose instances should reflect the impact of
extension variations on the specification language. This paper
describes an adaptive framework for the design of a class of
software specification languages supporting the incremental
process of elaborating software specifications.

1 Introduction
Software engineering strives to provide practitioners with
principles that help building reliable software systems.
One of the best-known principles concerns the elaboration
of software specifications to bridge the gap between
software requirements and their implementation in some
programming language. It is not the case of discussing the
rich debate about this issue, but it is worth mentioning
some lessons learned from the use of specification
languages in the traditional sequential program
construction viewpoint1. Firstly, the use of a formal
specification language, guided by some formal method,
does not guarantee the correctness of the software system
under construction [1], but specification languages with a
formal basis increase our understanding of the
specification by allowing the detection of inconsistencies
and ambiguities. Secondly, a specification should support
extensions, and should also exhibit operational
capabilities [2]. We are interested in these latter features
as the main drivers of specification language design. The
novelty of our approach is the use of an adaptive device
[3] in the specification language design, supporting the
realization of those desirable features. The motivation for
using the adaptive device approach is that such devices

1 In this paper, we are not considering the component based
software construction approach, i.e., the reuse in-the-large.

naturally solve the realization problem. Section 2 presents
the adopted viewpoint for specifications and specification
languages. Sections 3, 4 and 5 describe our strategy to
extend a specification (programming) language, and
present simple examples. Section 6 draws some
conclusions.

2 Specifications and Specification Languages
Software specifications may be viewed as theories
presentations elaborated for application domains. It is
expected that the resulting working program be derived
from its specification through a finite series of step-by-
step transformations extending the base theory, i.e. the
original specification [4]. Fundamental definitions
underlying this approach may be found elsewhere [5, 6],
to mention a few. We will briefly quote and synthesize the
core definitions of [4], with respect to theory and
language extensions.
• Since specifications and programs are linguistic

constructs, they must be expressed in a defined
linguistic system. A linguistic system consists of two
parts: a collection of well-formed sentences, and a
code of reasoning. Formally, LS = <LLS, �LS>, where
LLS denotes the linguistic system language and �LS
denotes the rules of reasoning of the LS.

• A theory T in a linguistic system LS is a set of LS
formulae, which is closed under �LS. A theory
presentation is an axiomatization of the theory, i.e. a
set of formulae from which all formulae of T can be
derived by means of the derivability relation �LS.
Formally, T = <LST, AT>, where LST is the linguistic
system of T and AT is the presentation of T.

• An LS’ = <LLS’, �LS’> is an extension of LS = <LLS,
�LS>, iff LLS � LLS’ e �LS � �LS’. If two theories are
expressed in the same LS, their respective languages
and presentations, leaving the underlying linguistic
system implicit, can characterize them. Formally,
T = <LT, AT> e T’ = <LT’, AT’>.

• A theory T’ is an extension of T, i.e. T � T’, iff the
properties defined by T for the symbols of LT are still
there in T’, and T’ allows the proofs of some new
properties.

• An extension T � T’ is conservative iff for all
formulae A of LT, if AT’ �SL’ A, then AT �SL A.

A program can also be viewed as a theory presentation
with an underlying linguistic system, but due to the
operational nature of programming languages there is a
bias of the theory presentation towards a particular
interpretation (a particular implementation) [4]. In other
words, a program is a specification of another program
written, say, in some machine language.
In brief, the program construction process is a series of
conservative incremental extensions of an initial theory, in
which increments add new terms and notions not
considered in previous extensions, while preserving the
properties included at each step. Given an increment, the
corresponding theory is stated in a corresponding
specification language. The next increment – or extension
of the theory – typically requires a related language
extension. To meet this requirement, the specification
language should be extensible. Does this property imply
writing a new compiler? Or would it be better using a
purely syntactic extension based on the semantics of an
appropriate existing language? We take the latter
approach as the main strategy for the design of software
specification languages.
In this paper, we illustrate this strategy with a very simple
example. Let the following operation be a fragment of a
theory presentation on integers, written in an imperative
Pascal-like programming language:
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER;
 START
 divide:= n/d
 END;

Let us suppose we want to extend the theory with the
notion of preconditions as of the design by contract
approach [7]. This approach states that the function
invocations at any point in a program must satisfy the
precondition specified for the function. That means the
programmer will not write explicit defensive code in order
to check the precondition in the function body, because
the respect for the precondition is an obligation for the
client of certain service, not for the supplier of that
service. The precondition specification for the above
fragment may be written as: PRE d <> 0, where PRE
denotes a precondition. This theory extension implies a
language extension.

3 Extending Programming Languages
Let us sketch a proposal for extending programming
languages as an intermediate goal towards the extension
of software specifications. Our main intent is keeping the
specifications executable. Starting from an available
programming language, one is allowed to employ in the
desired software specification strictly the abstractions

provided by the host language’s syntactic constructs.
When this is a syntactically extensible language, users
may create new syntactic constructs for representing
abstractions not included in the original notation, so users
may represent new abstractions in terms of existing ones.
By proceeding in a hierarchical way, successive
abstraction layers of increasing complexity may be built in
order to bring the expressiveness of the language closer
and closer to the domain of the particular software being
specified. Since each layer’s abstractions are stated
strictly as combinations of previously defined
abstractions, at each specification step any software will
be easily translated into the immediately preceding layer’s
abstractions, until reaching the lowest level abstraction
layer, represented by the host programming language.
With such a simple approach, specifying a software is
reduced to specifying a sequence of successive
abstractions, which are directly mapped into
corresponding language syntactical extensions and their
associate translating scheme into the abstractions defined
in previously defined abstraction layers. This process
proceeds until the set of available abstractions match the
expressiveness requirements for defining the application
software in terms of the application domain’s abstractions.
EXTENSIONS #N

. . .

EXTENSIONS #1
HOST LANGUAGE L0 L1

 . . .

 LN

The main feature of this approach is keeping the
specifications executable all along the development
process. No semantic gaps are introduced between the
specification and its implementation, since all
specification steps may be immediately converted into
executable code, and no abstraction is created unless it be
strictly stated in terms of existing, executable ones.
By adequately choosing the host programming language,
one may significantly reduce the need for supporting
computing resources for implementing this approach. For
instance, if L0 is an already existing extensible language
(e.g. LISP) all one must do is to define the abstractions
needed as extensions of L0 (in the case of LISP, the
extensions take the form of either macros or functions).
On the other hand, when L0 is not already extensible, then
an extension feature must be added in order to allow
following the proposed approach.
For usual non-extensible procedural host languages, it is
possible to implement a language extension additional
layer in order to provide the needed facilities for
programmers to provide their language extensions as
definitions for new abstractions. A powerful way to allow
the inclusion of extra abstractions in a given language is to
offer some meta-linguistic feature for allowing to define
new syntactical constructs. In our case, Wirth’s context-
free extended BNF notation has been chosen [8]. That is

enough for defining new syntax. Processing and
incorporating such user-defined syntactical extensions as a
preprocessor for the host language compiler is quite
straightforward [9]. However, syntax is not all we need. It
is necessary to state all extensions in terms of already
existing language constructs. In order to overcome this
problem, we adopted another well-known solution, e.g.
typifying the extensions and using classical operational
semantics for interpreting each new construct in terms of
existing ones: each new extension is declared as a context-
free grammar, and its meaning is also declared as a text
stated as a program using the basic host language syntax
enriched with previously declared syntactical constructs.
In this way, the compiler is informed on the new construct
to be further accepted, as well as on how exactly it must
be translated into lower-level abstractions. After accepting
such an extension definition, the compiler extends its
acceptor in order to recognize the new syntax, and
associates the declared translation procedure to the
syntactical recognition of the new construct. Whenever
further input text contain excerpts that follow the new
defined syntax, its related translation procedure is
followed, converting the input text in the extended
notation into another text written in the previous
abstraction level.

4 A Very Simple Extension Layer
In this section we present a simplified proposal of a
nucleus for an extension mechanism, to be used as a
preprocessor for procedural, originally non-extensible
languages. For space reasons, the host language has been
reduced to a minimum: block structure has been removed,
declarations have been reduced to simple untyped
variables, and commands have been eliminated, except for
if’s, go to’s and assignments of simple expressions.
The following context-free grammar, stated in modified
Wirth’s notation, defines, in its first part, the (non-
extensible host language) nucleus L0 we are going to use
as the starting version of our extensible language, and in
its second part, the proposed extension mechanism,
represented by EXT. Each time the non-terminal EXT is
instantiated, it extends the previous version of the
language by adding a new non-terminal (NEWNTERM) to its
grammar, and incorporates the corresponding abstraction
to the language syntax. Note that TERM represents any
terminal in the language, including identifiers (id),
integers (int) and other elementary language components.
//* HOST LANGUAGE (EXTREMELY SIMPLIFIED) *//
PROG = “BEGIN” (DECL \ “;”) “START” (COM \ “;”) “END” .
DECL = “VAR” (id \ “,”) “:” “INTEGER” | PROCEDURE | EXTENSION .
COM = LABEL “:” PROG | id := EXPARIT | “GOTO” LABEL |
 “IF” EXPARIT (“>” | “=” | “<” | “<>”) EXPARIT

 “THEN” PROG (“ELSE” PROG | ε) | PREVIOUSNTERM .
EXPARIT = ((id | int | CALL) \ (“+” | “-” | “*” | “/”)) .
CALL = id “(” (id | int | CALL \ “,”) “)” .

PROCEDURE = “FUNCTION” id “(” (id “:” “INTEGER” \ “;”) “)”
 “:” “INTEGER” “;”

 “START” (COM \ “;”) “END” “;” .
LABEL = id .

//* PROPOSED EXTENSION MECHANISM *//

PREVIOUSNTERM = ∅∅∅∅ .

EXTENSION = “DEFINE” NEWNTERM “:” “NEW” NTERM “AS” WIRTHMOD
 “MEANING” PREVIOUSWIRTHMOD “ENDDEFINE” .
NTERM = “PROG” | “DECL” | “COM” | “EXPARIT” | “EXTENSION”
 | “LABEL” | “NTERM” | “CALL” | “PROCEDURE” | “NEWNTERM”

 | “WIRTHMOD” | “PREVIOUSWIRTHMOD” | PREVIOUSNTERM .
NEWNTERM = id .

WIRTHMOD = (((TERM | NTERM | NEWNTERM | “ε”
 | “(” WIRTHMOD (“\” WIRTHMOD | ε) “)”)
 (“#” int | ε) \ (“|” | ε)) .
PREVIOUSWIRTHMOD = (((TERM | NTERM | “ε”
 | “(” PREVIOUSWIRTHMOD (“\” PREVIOUSWIRTHMOD | ε) “)”)
 (“#” int | ε) \ (“|” | ε)) .

The interpretation of the above grammar is almost
conventional, except for the meta-symbol ∅∅∅∅ that refers to
the empty set: initially there are no PREVIOUSNTERMs. After
the full handling of the declaration of an EXTENSION the
name corresponding to the NEWNTERM being declared is
added to the PREVIOUSNTERMs set of already defined non-
terminals of the grammar. So, WIRTHMOD refers to some
syntactical definition involving any terminals or non-
terminals, while PREVIOUSWIRTHMOD represents a syntax
strictly stated in terms of the non-terminals representing
abstractions known at the previous extension’s abstraction
layer. The extension pre-processor must adequately
update the set of PREVIOUSNTERMs in order to keep the
integrity of this mechanism.

5 Illustrating Case Studies
For illustration purposes, let us first work the small
situation referred to at the end of section 2. Let us restrict
the extension to including in the language the declaration
of preconditions. The suggested syntax has been starting
the construct with the word “PRE” followed by a condition
(in the case of our language, conditions may be defined in
terms of the relation between two arithmetic expressions),
exercising some of the previously described features. In
order to explore the extensibility feature introduced by the
preprocessor, the programmer should declare the desired
new syntax as shown below.
In words, the denominator of the division will be
automatically checked against zero every time the
function divide is called, and an error report will be
generated whenever that condition succeeds.
DEFINE PRECONDITION: NEW COM AS
 “PRE” EXPARIT # 1 (“=” | “<” | “>” | “<>”) EXPARIT # 2
MEANING
 “IF NOT (” EXPARIT # 1 (“=” | “<” | “>” | “<>”) EXPARIT # 2

“) THEN ERROR() ELSE”
ENDDEFINE;
...
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER;
 START
 PRECONDITION d <> 0;
 divide:=n/d
 END;
...

In terms of our preprocessor, its behavior may be
identified in the generated expanded code as follows:
FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER;
 START
 IF NOT (d <> 0) THEN ERROR () ELSE divide:=n/d
 END;

The next is another simple illustrating one referring to the
creation of new commands. Through such a feature, it is
easy to create new abstractions from already existing
ones. For instance, the next declaration adds a WHILE
statement to our host language:
DEFINE WHILESTATEMENT: NEW COM AS
 “WHILE” EXPARIT # 1 (“=” | “<” | “>” | “<>”) EXPARIT # 2
 “REPEAT” PROG # 3
MEANING
 “LOOP#: IF” EXPARIT # 1 (“=” | “<” | “>” | “<>”) EXPARIT # 2
 “THEN BEGIN” PROG # 3 "; GO TO LOOP# END”
ENDDEFINE;

In this case, note the meta-label LOOP# that must be
instantiated each time a WHILESTATEMENT is called, in
order to avoid label duplication in the resulting program.
For instance, the WHILESTATEMENT below:
WHILE x < 3 REPEAT BEGIN x := x+1; y:= y-1 END
is expanded into the following equivalent program,
according to the template previously defined:
LOOP0001: IF x < 3 THEN BEGIN
 BEGIN x := x+1; y:= y-1 END;
 GO TO LOOP0001
 END

The host language must at least provide the full set of
primitive constructs needed to specify all operations in the
program we intend to build. If it is not the case, then it
would not be possible to express the application program
facts in terms of the available host language’s basic
syntactic constructs, unless some extra effort be made in
order to provide the missing facilities for the host
language before the desired extensions are created and
used.

6 Conclusions
Obviously, there is much more to say about using
extensible features of a programming language in order to
ease the specification of software projects than what one
is allowed to fit into a four-page paper. Programming
language extensibility and operational semantics have not
received adequate attention in recent scientific works.
However, as we tried to show in this paper, their features
allow an easy way for implementing software directly
from specifications, in a bottom-um fashion, always
keeping the specifications executable, and eliminating the
deep gap between specifications and implementation,
usually found in current software engineering practices.
Using adaptive technology in the implementation of
compilers and preprocessors substantially reduces the
difficulty of implementing languages representing multi-
layers of abstractions by allowing the user to interact with
the kernel of the host language’s compiler without
opening its source code. Such great feature is

accomplished by the unification got when using adaptive
automata as the language’s run-time abstract machine.
In this way, adaptive automata may be generated both as
object-code, and as a syntax recognizer, so programs may
be compiled, their syntax may be modified and they also
may be easily executed in the same unified framework
provided by the underlying adaptive environment.

References
[1] Clarke, E.M., Wing, J.M. (1996) Formal methods:
state of the art and future directions. ACM Computing
Surveys 28(4): 626-643.

[2] Balzer, R., Goodman, N. (1986) Principles of good
specification and their implication for specification
languages. In Gehani, N., McGretick, A. (eds.) Software
specification techniques. Addison-Wesley, pp. 25-39.

[3] Neto, J.J. (2001) Adaptive rule-driven devices –
general formulation and case study. LNCS v.2494,
Springer-Verlag, pp. 234-250.

[4] Turski, W.M., Maibaum, T.S.E. (1987) The
specification of computer programs. Addison-Wesley,
London, UK.

[5] Smith, D.R. (1999) Designware: software
development by refinement. In Proc. 8th Internat. Conf. on
Category Theory and Computer Science (CTCS ’98),
Edinburgh, UK.

[6] Maibaum, T.S.E. (2003) On what exactly goes on
when software is developed step-by-step, II: the sequel.
Information Processing Letters 88: 45-51.

[7] Meyer, B. (1997) Object-oriented software
construction, 2nd. Ed. Prentice-Hall, New Jersey, USA.

[8] Wirth, N. What can we do with the unnecessary
diversity of notation for syntactic definitions? CACM 20
(11): 822-823.

[9] Neto, J.J., Pariente, C.B., Leonardi, F. (1999)
Compiler Construction – a Pedagogical Approach. V Int.
Congress on Informatics Engineering – Buenos Aires.

