
A Practical Method for the Implementation of Syntactic Parsers

PIER MARCO RICCHETTI 1, 2, JOÃO JOSÉ NETO 1
1Departamento de Engenharia de Computação e Sistemas Digitais

Universidade de São Paulo - Escola Politécnica
Av Prof. Luciano Gualberto, trav 3, 158 – Cidade Universitária

05508-900 São Paulo
BRASIL

2Núcleo de Pesquisa em Engenharia e Computação
Universidade São Judas Tadeu

Av Taquari, 546
03166-000 São Paulo

BRASIL
pier.ricchetti, joao.jose@poli.usp.br http://www.pcs.usp.br/~lta/

Abstract: - The implementation of syntactic parsers is a very important task in compiler construction. There are
several classic methods and algorithms used for syntactic parser construction [1][2][3][4][5]. In [3] there is a
proposal of a method for the automatic construction of syntax acceptors from context-free grammars, and also a
first extension of this method in order to allow the generation of syntax trees while accepting input sentences. In
this paper we present a further extension of that method by including the addition of semantic actions to the
generated device. This is a very practical method which can be used for educational purposes, by means of a
step-by-step construction and understanding of each algorithm applied to the original grammar. Moreover, the
transducer representing the desired parser activates semantic actions while a syntactic parsing tree is
automatically generated for the given input sentence.

Key-Words: - context-free languages, automata, grammars, syntax, parser, syntax tree, automatic generation

1 Introduction
A language is a set of valid sentences that follows
given production rules over an alphabet. Syntactic
parsers may be implemented to check the correctness
of such sentences by applying algorithms and special
techniques to the language's rules.
This paper shows techniques regarding the
construction of a syntactic parser that includes
semantic actions and the generation of the
corresponding syntactic tree, in a step-by-step way
that can be used for educational purposes too.

2 Previous Works
Conway [6] has proposed a structured pushdown
automaton that could be divided by its submachines.
This automaton was further formalized by Lomet [7].
Neto [3] proposed a context free parsing algorithm
based in such formalization. This algorithm was
further modified by Iwai [8] including adaptivity.

3 Our Proposal for Parser Generation
The automatic generation of a parser from a given
grammar (set of production rules) usually leads to

non-optimized formulations and to undesired non-
deterministic operation of the generated device. In
this paper, a method is proposed that starts from a
grammatical formulation of the desired context-free
language and both generates an equivalent automaton
and removes most non-deterministic transitions by
reworking and simplifying the given grammar, and
then constructing a corresponding structured
pushdown transducer [3]. This grammar includes
identifying labels that are used in the construction of
the parser. Such a parser is based on a structured
pushdown transducer that checks the syntax, accepts
the sentence, promotes the execution of semantic
actions associated to the grammatical rules needed in
the derivation of the sentence, and explicitly
generates the corresponding syntax tree.

4 Problem Solution
In this section, we describe the method proposed for
the automatic construction of a parser starting from a
context-free grammar given as a set of simple rules
denoted in Wirth’s notation.

4.1 Grammar Format
The initial grammar should have all i ts rules
following one of the three forms below only. In the
chosen notation, P is the non-terminal being defined
by the production rule; Y and Z are semantic actions
to be performed, and µ is a symbol sequence, µ ∈
(VN ∪ VT)*, where VN is the set of non-terminals in
the grammar and VT is the alphabet of the language.

(1) i : P → P{ Y} µ { Z} (left-recursive rules).
(2) i : P → { Y} µ { Z} P (right-recursive rules).
(3) i : P → { Y} µ { Z} (other rules).

(in the templates above, i represents a sequence
number identifying the corresponding rule).

In the case of a non-terminal for which there are both
left- and a right-recursive rules, the composition of
such rules is classified in group (1). In the cases in
which non-terminal P occurs inside the term µ, the
corresponding rule is classified in group (3).

4.2 Labeling Production Rules
Labels are used for keeping relevant information on
the original grammar, for further use in the
construction of the desired parser. A label is a
sequence of symbols that carries information on the
kind of the original rule, on the terminals and non-
terminals involved, and so on.

Considering µ as a sequence of symbols
�

k and the
corresponding labels

�
k

', with
�

k ,
�

k
' ∈ (VN ∪ VT)* ,

1 ����������	�

��� �����������
���
�������! " #�� $������%&���(')�!*)��+,���
��� +�� �
�
the rules below:

• each rule is identified uniquely by its sequence
number i = 0, 1, 2, ...;

• non-terminals are not labeled;
• terminal x receives a corresponding label x;
• semantic actions W are named - and labeled W;
• the start of any production rule is labeled with [
• the end of a production rule is labeled as],

preceded by L, R or G according to the
recursivity class of the non-terminal defined by
the current rule. (L = left, R = right, G = general).

Rules (4), (5), (6) below show the labeling of the rule
patterns (1), (2), (3) respectively.

[{Y} . 1’ . 2’ . n’ { Z} Pi
L]

(4) P→ / P / 0 1 2
1
1 2

2
1 ... 2 n

1 0 1

[{ Y} 2
1’

2
2’

2
n’ { Z} Pi

R]

(5) P→ 1 0 1 2
1
1 2

2
1 ... 2 n

1 0 1 P 1

[{ Y} 2
1’

2
2’

2
n’ { Z} Pi

G]

(6) P→ 1 0 1 2
1
1 2

2
1 ... 2 n

1 0 1
4.3 Grouping Production Rules
Production rules may be grouped according to the
three classes defined in (3.1), so that we obtain up to
three expressions for each non-terminal, one for class
(1) productions, one for class (2) productions, and
one for class (3) productions. For example, in
production rules of class (1), as the expression (4)
above, defining µz as a 2 labeled sequence, and
1354!356)798;:=<?>�@�A�B�CD@�E
:�:GF9H�I�:!J"J"BK<?C)L&M�NO>�:!PK<98,Q

[{Y1} {Z1}P1
L

(7) P → R P R (R S R T
1 U V U | U ...

{Y2} {Z2}P2
L

... U | U V U T
2 U V U | ...

{Ym} {Zm}Pm L]

... | U V U T
m U V U) U

In a similar way, we obtain expressions for the
remaining classes of productions.

4.4 Removing Self-recursions
The three kind of presented rules for a given non-
terminal (L, R, G) are now grouped in a single rule.
Considering that for the set of three productions:
(8) X → Xa

X → bX
X → c

the general solution for non-terminal X is b*ca*. We
may easily extend this result for our (more general)
case, giving the following expression:

[{Y1}

(9)P → W (W (W X Y \ Y Z Y

{ Z1} P1
R { Y2} { Z2} P2

R

µ1 [Z [| [Z [\ 2 [Z [| ...

{Ym} {Zm}Pn
R

... | � � � � m � � �) �

{Y1} {Z1}P1
G {Y2}

(� � � � 1 � � � | � � �

{Z2}P2
G {Ym}

� 2 � � � | ... | � � � � m �

{Zm}Pm
G {Y1} {Z1}P1

L

� �) � (� � � \ � � � � 1 � � �

{ Y2} { Z2} P2
L { Ym}

| � � � � 2 � � � | ... | � � � � m �

{ Zm} Pm
L]

� �) �) �

4.5 Simplifying the Rules
At this point, some additional classical techniques are
applied to the rules obtained in 3.4 in order to reduce
non-determinism and rule complexity, e.g.
- reworking options that have the same prefixes by

putting common prefixes in evidence;
- replacing left-recursive non-terminals by the

corresponding grammatical expressions;
- eliminating cyclic recursions;

In this paper, for space reasons, such procedures have
been omitted in order to avoid extra details in the
exposition of the proposed solution. In [3], interested
readers may find further information on this subject.

4.6 State Assignment
The assignment of states in correspondence to each
position in the expressions defining the simplified
grammar helps its conversion into a corresponding
structured pushdown transducer. In order to ease
explaining the assignment method, we assume that:
• E is an expression.
• a, b, c, d are all µ-like sequences which include

references to semantic actions;

• r, s are the state numbers assigned to the left and
to the right extremities of a parenthesized
sequence within an expression;

• x, y are variables whose numeric values are used
for identifying the states assigned;

State assignment is made according to the following
directions:
• the parenthesized groups are first detected;
• new states are assigned to the boundaries of such

groups;

If the group corresponds to one of the expression
templates:

E = �	�
��� 1 �
���� �
�� am ��� �
 r s

or

E = �	����� 1 ��
�� ���
�� am � ����� 1 � � !�! ! ��� bn ��" �
 r s

we assume that:
• if r has been previously assigned, then x := r, else

x is assigned a new state number, and state x is
assigned to the points at the leftmost extremity of
all sub-expressions corresponding to each
syntactical option in the group being considered;

• if s has been previously assigned then y := s, else
y receives a new state number and the state y will
be assigned to the rightmost extremity of all sub-
expressions corresponding to each syntactical
option in the group;

If the group corresponds to the following shape:
E = # (# $ % \ % b1 % | ...| % bn %) %
 r s

state assignment is made as follows:
E = % (% $ % \ % b1 % |...| % bn %) %

r x y y x y x s

If the group matches the next expression template:
E = % (% a1 % \ % b1 % | ...| % bn %) %
 r s

then state assignment is performed as follows:
E = % (% a1 % \ % b1 % |...| & bn &) &

r x y y x y x s

All unnumbered points remaining in the expression
are then assigned new state numbers.

4.7 Building the Transducer
Let T be any sub-expression of E. The desired
transducer is finally obtained by considering the
following cases for T:

(a) T = � � �
 x y

generates an empty transition from state x to state y.

(b) T = � ���
 x y

(where A is a semantic action) generates an empty
transition from state x to state y.

(c) T = � � �
 x y

(where N is a non-terminal) generates an empty
transition from x to the first state of the
automaton/transducer that represents the non-
terminal N. State y is pushed upon a stack and is later
popped at the end of the execution of the sub-
machine representing N.

(d) T = � (� � � \ � µ �) �
x y z t u v

generates:
• an empty transition from x to y;
• an empty transition from z to v;
• an empty transition from z to t;
• an empty transition from t to v;
• an empty transition from u to t;

The first and final states of the transducer are the
states associated to the start and to the end of the
expression defining the rule of the grammar that
describes the root non-terminal of the grammar.
All labels are included at the destination states of
each transition in the transducer.

4.8 Format for the Output Parse Tree
Our transducer produces as its output the parse trees
associated to its input sentences.	�

�����������������������������������! "�#�$�%���'&(�*),+-�/.%���10�23��� 4$5
6%7
terminal (tree leaf), 8 q, 1 9;:(9;<%=%>/?A@CB#DFE�G!GIH(EJ=LK G�=�M�NO=P<AQ
Pw, 1 9ORS9T<U=V<AHA<
B�D,G�E/WYX#<A=�K�N�DFZ�G�E�G[=�E�G\DFZ�G]M�H(K�K^H(RLX#<
_
conventions for the representations of the generated
tree [3]:
• () denotes a leaf associated to the empty string;
• `badc Q(G�<�H!D�G!>J=eK G�=�Mbf!H-E/E�G!>/gOHA<�Q-X�<A_hD�HL=�D�G�E,WdX#<A=PK a i
• jlk 1 k 2 ... k n X1), denotes X1 as the root node ofm�n
oSp/qArCs#mut�o!ovnAw�xAy#z
{%|^o'w�}�pJ~

1
~

2 ...
~

n ;

• [... X1) ... X2) ... Xn) denotes the same tree as
(((... X1) ... X2) ... Xn). The left bracket matches
all n right parentheses.

• [...] matching brackets are used as delimiters and
sometimes may be omitted.

Fig. 1 below shows the parsing tree represented by
[(a) Q) (b) R) (c) (d) S)].

Fig. 1 – Parsing tree

4.9 Parsing a Sentence
The transducer generated in 3.7 checks the validity of
a given sentence and, in addition, wil l produce a
syntax tree while executing the corresponding
semantic actions.
In order to achieve this goal, each label created in the
automaton must have its symbols checked in a
special table that determines the corresponding
actions to be output and the actions to be performed
onto a symbol stack.
Table 1 gives both the output to be generated and the
stack actions for each possible label symbol.
It associates to each label element the corresponding
output and stack move, in order to produce the
parsing tree in the format defined in section 3.8.

Label Output Stack Move
� () (no move)
� (�) (no move)

Pi
L Pi

L) (no move)

Pi
G Pi

G � � � �
Pi

R (�J� Pi
R

[[(�]

] �] � �]

{W} (execute action W)

Table 1: output and stack moves in label analysis.

S

c

b

a

R d

Q

In this table, the symbol � represents a “pop” action,
and � represents a “push” action onto the stack. The
symbol � represents the sequence of symbols in the
stack comprised between its top and the first
occurrence of the meta-symbol “]” .

5 Illustrating Example
In the following example, the derivation rules in a
context-free grammar G = ({ S, X} , { 0, 1} , R, S) are
extended with the inclusion of calls to semantic
actions A, B, C, D, E in order to enable it to perform
binary-to-decimal conversion while deriving
sentences.
The set of extended derivation rules defining G are:
R’ = { S → { } X{ A}

 X → { } 0 { B}
 X → { } 1 { C}
 X → X{ } 0 { D}
 X → X{ } 1 { E} }

See that each rule has its right hand side surrounded
by a pair of calls to semantic actions, denoted in
braces. Let value be a variable. The meaning of the
called semantic actions are the following:

{ A} : print value
{ B} : value � 0
{C} : value � 1
{D} : value � 2*value
{E} : value � 2*value+1
{ } : no action

5.1 Building the Parser
By applying the method exposed in section 3, we
obtain the following simplified rule shown in (10).

[[{} 0 {B}X1
G

(10) S � � (� (� (� A � (� 0 � � �

1 {C}X2
G {}

| � 1 � � �) �) � (� � 	 \ 	
 	

0 {D}X3
L {} 1 {E}X4

L]

0 	
 	 | 	
 	 1 	
) 	

{A}S0
G]

) 	
) 	

This single rule generates the following automaton /
transducer:

Fig.2 - Automaton/transducer generated from G

All labels are attached to the destination side of the
corresponding transitions. For a better view, the ^
symbol is used before each label in fig.2.

5.2 Processing a Sample Input String
Table 2 shows the parsing of the string “101” based
on processing the labels according to Table 1, for
each transition of the transducer in fig.2.

Symbol Transition Label Output Semantic
Action

[1] 0 1 1 � 31 [[(
31 � 61 { } [(
61 � 81 1 [((1)
81 � 51 {C}X2

G [((1)X2
G) {C}

(value = 1)
51 � 41 [((1)X2

G)
41 � 91 { } [((1)X2

G)
1 [0] 1 91 � 101 0 [((1)X2

G)(0)
101 � 51 {D}X3

L [((1)X2
G)(0)

X3
e)

{D}
(value = 2)

 51 � 41 [((1)X2
G)(0)

X3
L)

 41 � 111{ } [((1)X2
G)(0)

X3
L)

11

1
31

61

71
81

51

41101

91

21

111

121

^ [
^ { }εε

1 0

^ 1

ε
ε

^ {C}X2
G

^ {B}X1
G

ε

ε

ε

ε

^ { }

^ { }

0^ 0

^ 0

1

ε ε

^ {D}X3
L ^ {E}X4

L ^ 1

^ {A}S0
G]

ε

1 0 [1] 111 � 1211 [((1)X2
G)(0)

X3
L)(1)

121 � 51{ E} X4
L [((1)X2

G)(0)
X3

L)(1)
X4

L)

{ E}
(value = 5)

 51 � 41 [((1)X2
G)(0)

X3
L)(1)

X4
L)

 41 � 21 [((1)X2
G)(0)

X3
L)(1)

X4
L)

 21 � 11{ A} S0
e] [((1)X2

G)(0)
X3

L)(1)
X4

L)]

{ A}
(print 5)

Table 2: parsing of the string “101”, with output
generated and semantic actions performed.

In this case, the execution of the semantic actions
during the output analysis is possible because all the
actions occurs after each transition.
In grammars where actions are specified to be
applied before processing the non-terminals, other
order for action implementation would be chosen.
The printed result is 5, corresponding to the binary
numeral 101 given as input.
The parsing of string 101 generates the output
[((1)X2

G)(0)X3
L)(1)X4

L)]. Here, X4
L corresponds to

the root of the tree. The number 4 shows the number
of the original grammar’s rule applied (4 th rule,
starting at 0), the letter L shows that this rule refers to
a left-recursive non-terminal.
This node has as descendants two sub-trees: the
terminal (1) and ((1)X2

G)(0)X3
L). X3

L is a node that
represents the 3rd rule, is left-recursive and has as
descendants the terminal (0) and ((1)X2

G). X2
G is a

node that represents the 2nd rule, and corresponds to a
general (non-recursive) rule and has the terminal (1)
as a descendant. The tree can then be constructed as
follows:

Fig. 3 – Parse tree generated for the sentence 101

6 Conclusion
Although there are many good and well-known
classical methods for the construction of parsers from
context-free grammars, we have shown, in this paper,
an alternative method.
This is a very practical method that allow extending
the automatically generated structured pushdown
automata-based acceptors described in [3],[4] by
including calls to semantic actions specified along
the rules of the grammatical description of the
language to be parsed, given in Wirth’s notation.
The resulting transducer is fully compatible with the
original one, and is able to simultaneously accept the
input sentence, generate the corresponding parse tree
and perform the specified semantic actions.
The application of this method demands almost no
practice and theoretical background from its users. It
also shows to be very inexpensive, attractive and
easy to understand and learn, so it is advisable for
being used not only in real applications but especially
for educational purposes too.

References:
[1] APPEL, ANDREW, Modern Compiler
Implementation in C. 1.ed, The Press Syndicate of
The University of Cambridge, 1997.
[2] PRICE, A. M.A.; TOSCANI, S.S.,
Implementação de Linguagens de Programação:
Compiladores 2.ed. Porto Alegre: Editora Sagra
Luzzatto, 2004.
[3] NETO, J. J., Contribuições à Metodologia de
Construção de Compiladores: Tese para a obtenção
do título de Professor Livre-Docente junto ao
Departamento de Engenharia de Computação e
Sistemas Digitais PCS-EPUSP, 1993
[4] NETO, J.J.; PARIENTE, C.B.; LEONARDI,
F., Compiler Construction – A Pedagogical
Approach, ICIE, 1999
[5] TREMBLAY, J. P.; SORENSON, P.G., The
Theory and Practice of Compiler Writing, McGraw-
Hill , 1985.
[6] CONWAY, M. E., Design of a Separable
Transition Diagram Compiler Communications of
the ACM, 6, 7, 1963, pp. 396-408.
[7] LOMET, D. B. A Formalization of
Transition Diagram Systems Journal of The ACM,
20, 2, , 1973, pp. 235-257.
[8] IWAI, M.K. Um Formalismo Gramatical
Adaptativo Para Linguagens Dependentes de
Contexto: Tese para a obtenção do título de Doutor
em Engenharia PCS-EPUSP, 2000

X4

X3 1

X2 0

1

