An Adaptive Finite-State Automata Application to the
problem of Reducing the Number of States in Approximate
String Matching

Ricardo Luis de Azevedo da Roché, Jodo Jo€ Netd

!Laborabrio de Linguagens eé&cnicas Adaptativas — Escola Petihica — USP
Av. Professor Luciano Gualberto, Trav. 3 N. 158
CEP 05508-900 & Paulo — SP — Brasil

| ui s. rocha@oli.usp. br,joao.jose@oli.usp.br

Abstract

This paper presents an alternative way to use finite-statereta in order to deal with
approximate string matching. By exploring some adaptiveufea that enable any finite-
state automaton model to change configuration during ccetipatl steps, dynamically
deleting or creating new transitions, we can actually cntre behavior and the topology
of the automaton. We use these features for an applicatipmximate string matching
trying to reduce the number of states required.

Keywords

adaptive devices, approximate string matching, finiteestéaitomata, complexity, appli-
cation

Workshop

VI WORKSHOP DE AGENTES Y SISTEMAS INTELIGENTES (WASI)

1. Introduction

Finite-state automata are a significant part of the theogoaiputation, and the models
built from them are widely used in areas such as protocolipaion, hardware design,

and so forth. Despite the fact that such models are simplesttes, they define the class
of regular languages (tygelanguages) [8].

The use of simpler models to build complex structures is thergoal of some
efforts, such as in [6, 11]. Those researches have in comh®unode of a basic model,
and through some features, make them able to perform muadeoanplex actions. Such
as, to accept strings from typdanguages [6]. The original adaptive automaton is based
on a pushdown automaton [6], and the self-modifying automa based on the finite
automaton.

We will use a simplified version of the adaptive automatonungmroposal, which
is based on the finite automaton [7]. This paper addressegmication to the problem
of approximate string matching using the adaptive finit@aaton model.

The problem of approximate string matching may be direddigrassed to finite-
state automata. Since the early 1970’s some algorithmsliemmre developed to deal with
it, such as the Knuth-Morris-Pratt [1], or Boyer-Moore [2fddAho-Corasick [3]. All of
them are based on finite-state automata principles.

The subsequent effort raised new ways of implementatichsame new kinds of
models [10], but the problem remains unchanged:
Given a text string” = tity...t,, a pattern® = p;p, ... p,, and an integek, k < m <
n, we are interested in finding all occurrences of a substking string7" such that the
distanceD(P, X) between the patter® and X is less than or equal to kD(P, X) is
some given function that quantifies how cld3end X are, e.g. by counting unmatching
symbols.

In the literature we find several ways for measuring suctadist, e.g. the Ham-
ming distance, where it is allowed to replace a charactemoyher one, or the Leven-
shtein distance, where it is allowed to delete a characten the pattern or to insert a
character into the pattern (the generalized Levenshtstanite allows two characters to
be exchanged) [10].

The Hamming distance between two stringsand X, of equal length, may be
defined as the number of positions with mismatching symbotease strings. The Lev-
enshtein distance between two strifgsnd X, not necessarily of equal length, may be
defined as the minimal number of editing operations (inslatgte, and replace) needed
to convertP into X [10, 4]. In this paper we will use the Hamming distance measur

Some improvements have been achieved in the running timéarattual ‘size’
of the automaton along the process. Some researchershiEsosw ways to implement
automata models in order to get better performance on tlggirithms. In the next section
we will take into account a reduced model of finite automagajeveloped in [4].

2. Finite-State Automata for String Matching

A nondeterministic finite-state automaton is a 5-tuple= (K, >, 9, qo, F'), whereK is
a finite set of stateg, is a finite set of input symbol$,is a state transition function from
K x (S u{e}) to2K, g0 € Q is the initial state}” C K is the set of final states, [9].

Let us consider the example shown in figure 1, where there\arstites in a non-
deterministic finite-state automaton to exactly match anggended with the sequence

pipep3ps. If we need an approximate string matching, the nondetestigrfinite-state
automaton should be like the one shown in figure 2.

D1 D2 P3 P4
—>8— O—0O—0O

oceXx
Figure 1: Nondeterministic Finite Automaton.

Figure 2 shows an automaton built for Hamming distance ef 3, which allows
exact matching at the first path, one mismatch at the secdhgaa so forth. At the end
of each path there is a final state, which identifies the nurobetismatches found in the
string.

oEeY

Figure 2: Nondeterministic Finite-State Automaton for Approximate String
Matching of the String accepted by the automaton in Figure 1.

For the Levenshtein distance a similar automaton is slighibre complex, be-
cause it requires two further edit operations on the exaginal string.

The research developped by Holub [4] has shown a way to retthecaumber
of states in such nondeterministic finite-state automatogated to fit a given distance
function (Hamming distance df = 3). Holub’s automaton is constructed without the
need to identify the number of mismatches in the string, seetlis only one final state,
and each path may be significantly reduced, as shown in Fjjure

o€

Figure 3: Holub’s Nondeterministic Finite-State Automaton for Approximate
String Matching.

In the next section we will use a different strategy, expigrdynamic features

added to the automaton in order to achieve a better resulh@mumber of states, by
dynamically keeping in the automaton only the strictly riegd states and transitions.

3. Adaptive Features

The main result shown by Holub in [4] is achieved by includimghe automaton only the
states strictly needed for handling the condition. By appythis idea and by creating
the needed states at the execution time, we may significeadlyce the total number of
states in the automaton.

By doing so we may use the guidelines in [5], where we find a fomtieoduction
to adaptive devices, and explore the concept of generabniten devices which may be
tailor-made just to fit our specific needs. From this pointiefw we are able to create an
automaton that is able to modify its own configuration acocwdo the particular needs
of the problem currently being solved.

Following [5] let us consider the nondeterministic finitdé@uaton in figure 2 as
our starting point for the creation of an adaptive finiteestautomaton in the following
way: M, = (M, AM), wherel,, stands for adaptive finite-state automatbhrepre-
sents the original finite state automaton, ahtd describes the mechanism that modifies
the shape of the configuration of the automaton.

Let AA be a fixed set of actions (including a speciall adaptive action a®). AM
contains a set of rules that may change the topology of theraaton. LetA R be the set
of all possible sets of such rules far,,,. In this case, any particular actieti € AA
maps the current set of rulesR;, C AR, defining the automaton into some other set
of rules AR, ;1 C AR, which will be the next set of rules defining the automatorilunt
another action takes place.
a": AR — AR

The mechanismAM associates each transitione o of the original finite au-
tomaton to a corresponding pair of actidig andaa? € AA:

AM C AA X NR x AA

This way we define aadaptive rule ar? associated to a rule (transition)? of
the finite automaton as a 3-tuple i/ as:

ar? = (ba?, nr? aa®)

For each of its moves the adaptive automatdys, applies the chosen rute? in
three steps:

e Activation of an adaptive actiobu? before applying the rules?,
e Application of a rule (transitionpr?, and,
e Execution of an adaptive actiam? after the application ofir?.

Transitions of the adaptive finite-automaton are definesl way: when the au-
tomaton is in state” and will perform a rule (transitionjr? = (ba?, nr?, aa?) which
leads to state?*! and modifies the set of states and transitions, there is aatoh of
the adaptive actioha?, then the rule (transition) is performed and changes te stat,
and then the adaptive actian? is performed, and we show those actions;by- sP**.

The main feature of the adaptive finite-state automatos shtlity to apply mod-
ifications to the initial automaton, in order to change itgimal structure (states and
transitions) in order to face the particular needs of thesxurproblem.

Proposition 1 The adaptive actions may be placed in order to change an automaton be-
fore or after therule (transition).

Proof: Following [7], and by induction on the adaptive steps. Siggpave want only
to apply adaptive actions before the application of a rube (proof is similar for the
other case). We will create an additional step to each adaptie which has an adaptive
action after the application of a rule. We have thfat- sP*!, and the transition igr? =
(ba?, nr? aaP), at statey?

Base: ar? = (ba?, nr?, aa?), makingp = 0 we have two cases:
First supposing we have no adaptive steps, so there is ndhaglaption to apply,
which meansir® = (ba®, nr®, aa®) = nr°, andq® - s°.
For the second case suppgse 0, and we have at least one adaptive action at step
0, so beginning from the initial steppwe haveg - s', andar® = (ba®, nr°, aa®),
so we need to create another adaptive step between theajupliof the rulens®

andaa®), indeed we can apply:

dditi [st .
ar® = (ba®, znr®,) “ TP (aal, nrt, €), wheree stands for an empty action.

But then we need another state, a new one created by actidh say stater!.

So after changing the adaptive actibt? to zba” in order to delete the original
transitiong® - s! with ar® = (ba®, nr°, aa®) and create two others in its place, but
keeping the other actions 6f°: ¢° - 2!, andz! I s2, where the transition from
¢° to 2! is described agr® = (zba’, bnr?, €), and fromz! to s? as(aal, anr!,e),
where rulesinr® andanr® act as the original actionr’, but with an additional
step.

Hyp.: ar? = (ba?, nr?, aa?), Vg such ag) < ¢ < p can be split in two, where there are
no adaptive actions after the transition of both.

Step: ar?™ = (ba?™!, nrP* aaP™') As we have the application of the rules in steps,
there must have beensteps of the fornar? = (ba?, nr?, aa?), and each of these
steps fall into the inductive hypothesis. The last step casit in two just as
before (in base case, where= 0 with 1 adaptive step):

additional step
arP™ = (zbaP™ bnrP!) — (aaP™2 anrP*?)

O

Adaptive finite-state automata were designed from classiefstate automata [8,
9], and may be viewed as a set of finite-state automata graogether by the possibility
of each one be replaced by some other one by changing th@tppal the currently used
one.

In this scenario, for deterministic languages, each statehme operates as a
finite-state machine, except when handling complex (nguoieg) constructs, when fur-
ther accesses to the adaptive rules are needed in orderdtel@mtext-free or context-
sensitive constructs, which are not handled by finite-gtatemata alone [5].

Adaptive finite-state automata may then be viewed as fitd automata with
the added ability to modify their current structure, e.g.nspect the original model, and
then to create new transitions and/or states, or to delete % its existent transitions
and/or states. With such feature, adaptive finite-statenaaia achieve the same compu-
tational power of Turing machines [6].

Therefore, adaptive finite state automata represent stathines (here we use
the same concept of [8], in which any oriented graph that garbslically represent, by
its transitions or arrows, the behavior of a device, progrand so forth), which starts
its operation as a simple finite-state machine, but as loraglaptive actions take place,
some structural changes are applied to the initial modedlifyiog the set of states and

transitions of the original machine. Those changes arergtwwhile performing the
transitions during the operation of the machine, when aptadgtransition is found [5, 6].

As shown in Proposition 1 adaptive actions may be adequptabed in order to
change an automaton only once, before or after the transiBy doing so the number
of steps is decreased, as well as the number of actions ne&del@ 1 shows the list of
simple adaptive actions that can be used to build an ad&pintion.

+: Action to add a new transition

-: Action to delete a transition

?: Action to search the set of transitions defining the cunmstance of the automaton
for some given transition

Table 1: List of adaptive Actions

4. Application to approximate string matching using an adapive finite-state
automaton

When an adaptive finite-state automaton is in operationestand transitions can be
deleted from or added to the current state machine, but #maly happen if the tran-
sition that will occur in a step has attached adaptive astaesigned to face the needs
devised from the input string analysis. Such changes in dnéiguration of the device
build a new state-machine, which replaces the current ohen &n additional step takes
place, and so on. Such operation may be interpreted as patrgal in a state-machine
space. As stated in [5], adaptive finite-state automata eandwed as an extended ver-
sion of the formalism for finite-state automaton.

So if we want to keep a maximum distancelofve will needk adaptive actions,
in order to count the number of mismatches between the dteing searched for and the
string being scanned. At each step, whenever a differenforiigd, an adaptive action
takes place which changes the automaton creating a nevasigtey changing the set of
adaptive (counting) actions. In figure 4 there is an exanglé £ 3, where the adaptive
transitions are represented in gray, and they will only faleee when they are actually
needed. The adaptive transitions have one adaptive furictioe taken after the transition
to another state, symbolized by : A, wherep; stands for the symbol scanned, aAd
stands for an adaptive function namdd

cec A

Figure 4: Adaptive Finite-state Automaton.

In figure 4 the adaptive transitions were drawn in gray, aeg ttave more infor-
mation than the others. For instance the arrow connectatgisto statem illustrates the
adaptive transition of the automaton, the first symbol oftthesition shows the actual
transition symbol, and, after the comma we may find the adapiitions, one before the
colon (the action taken before the transition), and therodéfier the colon (the action

taken after the transition). We may perceive that the ttexms in gray have actions at-
tached to them that are expected to be performed after th&ticn takes place, meaning
that action4 changes the automaton afterwards the transition is peeidrm

That action does not create a new state, but changes altiwassvith A as their
attached action, replacing it by a call to another actiol, 8ain order to update the
distance being measured. But since we have 3, two other similar actions are needed.

Figure 4 also shows that the effect of creating or deletiagditions are to be
taken into account when needed, so the overhead is not limetde size of the text. Itis
necessary to perform a more accurate study on its effect.

As an example taken from figure 4, consider the stppg.psps, wherep, #
pi, 1 < 1 < 4. This string is processed by the automaton leading to thégroation of
figure 5, after processing substripgy,.

ce A

Figure 5: Adaptive Finite-state Automaton processing pipgpsps after pypy.

As there is no need to create or delete states, only to createl@te transitions
between the initial set of states, the set of states becomess find a fixed length state-
transition table may be constructed. The transitions wittzalaptive actions can be per-
formed in a simple fashion. To distinguish an adaptive fteorsfrom the others, it is
only needed to mark them inside the transition table.

Any marked transition means an adaptive one, so after it bad performed the
list of marked transitions is changed to another shape doupto the current adaptive
action, and then the next adaptive action, if present, s@isnged.

In the example of Figure 4 there are three adaptive acticarsety A, B andC,
which are defined as:

A=

+ + +
E
S
=
-
[
!

aQ
Il

The actionA just defined creates a set of non-adaptive transitionsa(secwe
havee before and after the colon), in order to return to the origfaad correct) path.

Action A deletes all self-reference adaptive transitions, andieses new set of
transitions that change the deleted ones into correspgséifrreference adaptive transi-
tions callingB.

Therefore any other mismatch will perform a similar taskwattion3, changing
it into C, and so forth, until the last calling level, when the striadinally rejected.

This sort of sequence of actions creating transitions wbathother actions, and
replace the existing transitions, allows the automatorotdrol and ‘count’ existing mis-
matches.

If a distancek is needed, we will have to considedifferent adaptive actions, so
that every action will delete itself when executed, and ter@amother action, the next in
sequence, in order to replace it. This way, we may keep tritlealistance, as mentioned
before, by ‘counting’ the number of actions already perfedm

This sort of behavior has some advantages, we can signlficadtce the number
of control states needed. Actually there must be one costaté, as showed by the
example of figure 4, but it can become clearer and more mahbg#ave create more
than one state. Splitting the mistakes from the states,dardo keep a different state to
eachk. Doing so allows us to just ‘connect’ or ‘disconnect’ exigfitransitions, becoming
easier to manipulate the state-transition table.

5. Conclusions

This paper presented an alternate way to reduce the numlstates of a finite-state
automaton, when dealing with approximate string matchiigpe actual ‘size’ of the
automaton model can be reduced to a level very close to theamnesponding to exact
string matching.

In fact, the number of initial states is the same of the fisiete automaton for
exact match, plus one state. At each mismatch found, thsiti@ms of the automaton
are replaced by others, in order to keep control of the nurabarismatches, until the
number of mismatches reachiesthen no other mismatch will be accepted (because the
adaptive transitions are replaced by simple transitions).

However, such a reduction has a price: we will need to replaedransitions at
execution time (deleting the existing, and creating othetake their place), despite the
fact that it will only be executed when needed. But if we cremte state to each level of
mistake £ states at all), we will be able manipulate the state-traorsilble much more
easily. In this paper we have not addressed directly the-tiomeplexity of the solution,
but we intend to do it.

There are other research studies taking into account thistae feature, and we
noticed that there are results and practical simulatioas ukes it, such as [11]. How-
ever, they share a common focus, they are connected to thegsiog of context-free or
context-sensitive languages [6].

References

[1] Knuth, D. E., Morris, J. H., Pratt, V. R., Fast pattern niang in stringsSAM J. Comput.
6, 2(1977) 323-350.

[2] Boyer, R. S., Moore, J. S., A fast string searching algamit@omm. ACM 20, 10(1977)
62-72.

[3] Aho, A. V., Corasick, M. J., Efficient string matching: amdao bibliographic search.
Comm. ACM 18, 6(1975) 333-340.

[4] Holub, J., Reduced Nondeterministic Finite AutomataApproximate String Matching.
Proceedings of the Prague Stringology Club Workshop ’ 96, Czech Technical Univer-
sity (August 1996) 19-27.

[5] J. J. Neto, Adaptive Rule-driven Devices - General Foatiah and Case StudZIAA
2001: Proceedings of the 6th International Conference on Implementation and Ap-
plication of Automata (2001).

[6] J. J. Neto, Adaptive Automata for Context-Depend-entdieagesACM SIGPLAN No-
tices 29, 9(Sep-tember, 1994) 115-124.

[7] J. J. Neto; C.A. B. Pariente, Adaptive Automata - a revispeoposal CIAA 2002: Pro-
ceedings of the 7th International Conference on Implementation and Application of
Automata - Lecture Notesin Computer Science 2608(July, 2002) 158-168.

[8] J. Hopcroft, and J. Ullman, Formal Languages and theiatkat to Automata. Addison-
Wesley. 1969.

[9] H. Lewis, and C. Papadimitriou, Elements of the Theory ofpatation. Prentice-Hall.
1998.

[10] Navarro, G., A guided tour to approximate string matchiACM Computing Surveys
33, 1(March, 2001) 31-88.

[11] R. Rubinstein, and J. N. Shutt, Self-modifying finite antda.Proceedings of the 13th
IFIP World Computer Congress, 1994 (1994) 493-498.

