
An Adaptive Finite-State Automata Application to the
problem of Reducing the Number of States in Approximate

String Matching

Ricardo Luis de Azevedo da Rocha1 , João Jośe Neto1

1Laborat́orio de Linguagens e T́ecnicas Adaptativas – Escola Politécnica – USP
Av. Professor Luciano Gualberto, Trav. 3 N. 158

CEP 05508-900 S̃ao Paulo – SP – Brasil

luis.rocha@poli.usp.br,joao.jose@poli.usp.br

Abstract

This paper presents an alternative way to use finite-state automata in order to deal with
approximate string matching. By exploring some adaptive features that enable any finite-
state automaton model to change configuration during computational steps, dynamically
deleting or creating new transitions, we can actually control the behavior and the topology
of the automaton. We use these features for an application toapproximate string matching
trying to reduce the number of states required.

Keywords

adaptive devices, approximate string matching, finite-state automata, complexity, appli-
cation

Workshop

VI WORKSHOP DE AGENTES Y SISTEMAS INTELIGENTES (WASI)



1. Introduction

Finite-state automata are a significant part of the theory ofcomputation, and the models
built from them are widely used in areas such as protocol specification, hardware design,
and so forth. Despite the fact that such models are simple to create, they define the class
of regular languages (type3 languages) [8].

The use of simpler models to build complex structures is the main goal of some
efforts, such as in [6, 11]. Those researches have in common the use of a basic model,
and through some features, make them able to perform much more complex actions. Such
as, to accept strings from type0 languages [6]. The original adaptive automaton is based
on a pushdown automaton [6], and the self-modifying automaton is based on the finite
automaton.

We will use a simplified version of the adaptive automaton in our proposal, which
is based on the finite automaton [7]. This paper addresses an application to the problem
of approximate string matching using the adaptive finite automaton model.

The problem of approximate string matching may be directly addressed to finite-
state automata. Since the early 1970’s some algorithms havebeen developed to deal with
it, such as the Knuth-Morris-Pratt [1], or Boyer-Moore [2], and Aho-Corasick [3]. All of
them are based on finite-state automata principles.

The subsequent effort raised new ways of implementation, and some new kinds of
models [10], but the problem remains unchanged:
Given a text stringT = t1t2 . . . tn, a patternP = p1p2 . . . pm, and an integerk, k ≤ m ≤
n, we are interested in finding all occurrences of a substringX in stringT such that the
distanceD(P,X) between the patternP andX is less than or equal to k.D(P,X) is
some given function that quantifies how closeP andX are, e.g. by counting unmatching
symbols.

In the literature we find several ways for measuring such distance, e.g. the Ham-
ming distance, where it is allowed to replace a character by another one, or the Leven-
shtein distance, where it is allowed to delete a character from the pattern or to insert a
character into the pattern (the generalized Levenshtein distance allows two characters to
be exchanged) [10].

The Hamming distance between two stringsP andX, of equal length, may be
defined as the number of positions with mismatching symbols in those strings. The Lev-
enshtein distance between two stringsP andX, not necessarily of equal length, may be
defined as the minimal number of editing operations (insert,delete, and replace) needed
to convertP into X [10, 4]. In this paper we will use the Hamming distance measure.

Some improvements have been achieved in the running time andthe actual ‘size’
of the automaton along the process. Some researchers described new ways to implement
automata models in order to get better performance on their algorithms. In the next section
we will take into account a reduced model of finite automata, as developed in [4].

2. Finite-State Automata for String Matching

A nondeterministic finite-state automaton is a 5-tupleM = (K, Σ, δ, q0, F ), whereK is
a finite set of states,Σ is a finite set of input symbols,δ is a state transition function from
K × (Σ ∪ {ǫ}) to 2K , q0 ∈ Q is the initial state,F ⊆ K is the set of final states, [9].

Let us consider the example shown in figure 1, where there are five states in a non-
deterministic finite-state automaton to exactly match any string ended with the sequence



p1p2p3p4. If we need an approximate string matching, the nondeterministic finite-state
automaton should be like the one shown in figure 2.

p1 p2 p3 p4

σ ∈ Σ

Figure 1: Nondeterministic Finite Automaton.

Figure 2 shows an automaton built for Hamming distance ofk = 3, which allows
exact matching at the first path, one mismatch at the second path, and so forth. At the end
of each path there is a final state, which identifies the numberof mismatches found in the
string.

p1 p2 p3 p4

σ ∈ Σ

p1 p2 p3 p4

p2 p3 p4

p2 p3 p4

p3 p4

p3 p4

p4

Figure 2: Nondeterministic Finite-State Automaton for Approximate String
Matching of the String accepted by the automaton in Figure 1.

For the Levenshtein distance a similar automaton is slightly more complex, be-
cause it requires two further edit operations on the exact original string.

The research developped by Holub [4] has shown a way to reducethe number
of states in such nondeterministic finite-state automaton,created to fit a given distance
function (Hamming distance ofk = 3). Holub’s automaton is constructed without the
need to identify the number of mismatches in the string, so there is only one final state,
and each path may be significantly reduced, as shown in Figure3.

p1

σ ∈ Σ

p1 σ
p2

p2 σ
p3

p3 σ
p4

Figure 3: Holub’s Nondeterministic Finite-State Automaton for Approximate
String Matching.

In the next section we will use a different strategy, exploring dynamic features



added to the automaton in order to achieve a better result on the number of states, by
dynamically keeping in the automaton only the strictly required states and transitions.

3. Adaptive Features

The main result shown by Holub in [4] is achieved by includingin the automaton only the
states strictly needed for handling the condition. By applying this idea and by creating
the needed states at the execution time, we may significantlyreduce the total number of
states in the automaton.

By doing so we may use the guidelines in [5], where we find a formal introduction
to adaptive devices, and explore the concept of general rule-driven devices which may be
tailor-made just to fit our specific needs. From this point of view, we are able to create an
automaton that is able to modify its own configuration according to the particular needs
of the problem currently being solved.

Following [5] let us consider the nondeterministic finite automaton in figure 2 as
our starting point for the creation of an adaptive finite-state automaton in the following
way: Msm = (M,AM), whereMsm stands for adaptive finite-state automaton,M repre-
sents the original finite state automaton, andAM describes the mechanism that modifies
the shape of the configuration of the automaton.

Let AA be a fixed set of actions (including a specialnull adaptive action a0). AM

contains a set of rules that may change the topology of the automaton. LetAR be the set
of all possible sets of such rules forMsm. In this case, any particular actionak ∈ AA

maps the current set of rulesARt ⊆ AR, defining the automaton into some other set
of rulesARt+1 ⊆ AR, which will be the next set of rules defining the automaton until
another action takes place.

ak : AR → AR

The mechanismAM associates each transitionti ∈ δ of the original finite au-
tomaton to a corresponding pair of actionsbap andaap ∈ AA:

AM ⊆ AA × NR × AA

This way we define anadaptive rule arp associated to a rule (transition)nrp of
the finite automaton as a 3-tuple inAM as:

arp = (bap, nrp, aap)

For each of its moves the adaptive automatonMsm applies the chosen rulearp in
three steps:

• Activation of an adaptive actionbap before applying the rulenrp,
• Application of a rule (transition)nrp, and,
• Execution of an adaptive actionaap after the application ofnrp.

Transitions of the adaptive finite-automaton are defined this way: when the au-
tomaton is in stateqp and will perform a rule (transition)nrp = (bap, nrp, aap) which
leads to statesp+1 and modifies the set of states and transitions, there is an activation of
the adaptive actionbap, then the rule (transition) is performed and changes to state sp+1,
and then the adaptive actionaap is performed, and we show those actions byqp ⊢ sp+1.

The main feature of the adaptive finite-state automaton is its ability to apply mod-
ifications to the initial automaton, in order to change its original structure (states and
transitions) in order to face the particular needs of the current problem.



Proposition 1 The adaptive actions may be placed in order to change an automaton be-
fore or after the rule (transition).

Proof: Following [7], and by induction on the adaptive steps. Suppose we want only
to apply adaptive actions before the application of a rule (the proof is similar for the
other case). We will create an additional step to each adaptive one which has an adaptive
action after the application of a rule. We have thatqp ⊢ sp+1, and the transition isarp =
(bap, nrp, aap), at stateqp

Base: arp = (bap, nrp, aap), makingp = 0 we have two cases:
First supposing we have no adaptive steps, so there is no adaptive action to apply,
which meansar0 = (ba0, nr0, aa0) = nr0, andq0 ⊢ s0.
For the second case supposep = 0, and we have at least one adaptive action at step
0, so beginning from the initial step0 we haveq0 ⊢ s1, andar0 = (ba0, nr0, aa0),
so we need to create another adaptive step between the application of the rulenr0

andaa0), indeed we can apply:

ar0 = (ba0, xnr0, ǫ)
additional step

→ (aa1, nr1, ǫ), whereǫ stands for an empty action.
But then we need another state, a new one created by actionxnr0, say statex1.
So after changing the adaptive actionba0 to xba0 in order to delete the original
transitionq0 ⊢ s1 with ar0 = (ba0, nr0, aa0) and create two others in its place, but
keeping the other actions ofba0: q0 ⊢ x1, andx1 ⊢ s2, where the transition from
q0 to x1 is described asar0 = (xba0, bnr0, ǫ), and fromx1 to s2 as(aa1, anr1, ǫ),
where rulesbnr0 andanr1 act as the original actionnr0, but with an additional
step.

Hyp.: arq = (baq, nrq, aaq), ∀q such as0 ≤ q ≤ p can be split in two, where there are
no adaptive actions after the transition of both.

Step: arp+1 = (bap+1, nrp+1, aap+1) As we have the application of the rules in steps,
there must have beenp steps of the formarp = (bap, nrp, aap), and each of these
steps fall into the inductive hypothesis. The last step can be split in two just as
before (in base case, wherep = 0 with 1 adaptive step):

arp+1 = (xbap+1, bnrp+1, ǫ)
additional step

→ (aap+2, anrp+2, ǫ)

♦

Adaptive finite-state automata were designed from classic finite-state automata [8,
9], and may be viewed as a set of finite-state automata groupedtogether by the possibility
of each one be replaced by some other one by changing the topology of the currently used
one.

In this scenario, for deterministic languages, each state machine operates as a
finite-state machine, except when handling complex (non-regular) constructs, when fur-
ther accesses to the adaptive rules are needed in order to handle context-free or context-
sensitive constructs, which are not handled by finite-stateautomata alone [5].

Adaptive finite-state automata may then be viewed as finite-state automata with
the added ability to modify their current structure, e.g., to inspect the original model, and
then to create new transitions and/or states, or to delete some of its existent transitions
and/or states. With such feature, adaptive finite-state automata achieve the same compu-
tational power of Turing machines [6].

Therefore, adaptive finite state automata represent state machines (here we use
the same concept of [8], in which any oriented graph that can symbolically represent, by
its transitions or arrows, the behavior of a device, program, and so forth), which starts
its operation as a simple finite-state machine, but as long asadaptive actions take place,
some structural changes are applied to the initial model, modifying the set of states and



transitions of the original machine. Those changes are generated while performing the
transitions during the operation of the machine, when an adaptive transition is found [5, 6].

As shown in Proposition 1 adaptive actions may be adequatelyplaced in order to
change an automaton only once, before or after the transition. By doing so the number
of steps is decreased, as well as the number of actions needed. Table 1 shows the list of
simple adaptive actions that can be used to build an adaptivefunction.

+: Action to add a new transition
-: Action to delete a transition
?: Action to search the set of transitions defining the current instance of the automaton
for some given transition

Table 1: List of adaptive Actions

4. Application to approximate string matching using an adaptive finite-state
automaton

When an adaptive finite-state automaton is in operation, states and transitions can be
deleted from or added to the current state machine, but this can only happen if the tran-
sition that will occur in a step has attached adaptive actions designed to face the needs
devised from the input string analysis. Such changes in the configuration of the device
build a new state-machine, which replaces the current one. Then an additional step takes
place, and so on. Such operation may be interpreted as path traversal in a state-machine
space. As stated in [5], adaptive finite-state automata can be viewed as an extended ver-
sion of the formalism for finite-state automaton.

So if we want to keep a maximum distance ofk, we will needk adaptive actions,
in order to count the number of mismatches between the stringbeing searched for and the
string being scanned. At each step, whenever a difference isfound, an adaptive action
takes place which changes the automaton creating a new stateand by changing the set of
adaptive (counting) actions. In figure 4 there is an example for k = 3, where the adaptive
transitions are represented in gray, and they will only takeplace when they are actually
needed. The adaptive transitions have one adaptive function to be taken after the transition
to another state, symbolized bypi : A, wherepi stands for the symbol scanned, andA
stands for an adaptive function namedA.

0 1 2 3 4

m

p1 p2 p3 p4

σ ∈ A

p1 : A

p2 : A p3 : A

p4 : A

Figure 4: Adaptive Finite-state Automaton.

In figure 4 the adaptive transitions were drawn in gray, and they have more infor-
mation than the others. For instance the arrow connecting state1 to statem illustrates the
adaptive transition of the automaton, the first symbol of thetransition shows the actual
transition symbol, and, after the comma we may find the adaptive actions, one before the
colon (the action taken before the transition), and the other after the colon (the action



taken after the transition). We may perceive that the transitions in gray have actions at-
tached to them that are expected to be performed after the transition takes place, meaning
that actionA changes the automaton afterwards the transition is performed.

That action does not create a new state, but changes all transitions withA as their
attached action, replacing it by a call to another action, say B, in order to update the
distance being measured. But since we havek = 3, two other similar actions are needed.

Figure 4 also shows that the effect of creating or deleting transitions are to be
taken into account when needed, so the overhead is not linearon the size of the text. It is
necessary to perform a more accurate study on its effect.

As an example taken from figure 4, consider the stringp1pkp3p4, wherepk 6=
pi, 1 ≤ i ≤ 4. This string is processed by the automaton leading to the configuration of
figure 5, after processing substringp1pk.

0 1 2 3 4

m

p1 p2 p3 p4

p2

p3
p4

σ ∈ A

p3 : B

p4 : B

Figure 5: Adaptive Finite-state Automaton processing p1pkp3p4 after p1pk.

As there is no need to create or delete states, only to create or delete transitions
between the initial set of states, the set of states becomes fixed, and a fixed length state-
transition table may be constructed. The transitions without adaptive actions can be per-
formed in a simple fashion. To distinguish an adaptive transition from the others, it is
only needed to mark them inside the transition table.

Any marked transition means an adaptive one, so after it had been performed the
list of marked transitions is changed to another shape according to the current adaptive
action, and then the next adaptive action, if present, is also changed.

In the example of Figure 4 there are three adaptive actions, namelyA,B andC,
which are defined as:

A = [
+ (m, p2)ǫ : ǫ, ǫ → (2)
+ (m, p3)ǫ : ǫ, ǫ → (3)
+ (m, p4)ǫ : ǫ, ǫ → (4)
− {∀x, y : (x, y)A : ǫ → (m)}
+ {∀x, y : (x, y)B : ǫ → (m)}]

B = [
+ (m, p2)ǫ : ǫ, ǫ → (2)
+ (m, p3)ǫ : ǫ, ǫ → (3)
+ (m, p4)ǫ : ǫ, ǫ → (4)
− {∀x, y : (x, y)B : ǫ → (m)}
+ {∀x, y : (x, y)C : ǫ → (m)}]

C = [
+ (m, p2)ǫ : ǫ, ǫ → (2)
+ (m, p3)ǫ : ǫ, ǫ → (3)
+ (m, p4)ǫ : ǫ, ǫ → (4)
− {∀x, y : (x, y)C : ǫ → (m)}]



The actionA just defined creates a set of non-adaptive transitions, (because we
haveǫ before and after the colon), in order to return to the original (and correct) path.

Action A deletes all self-reference adaptive transitions, and creates a new set of
transitions that change the deleted ones into corresponding self-reference adaptive transi-
tions callingB.

Therefore any other mismatch will perform a similar task with actionB, changing
it into C, and so forth, until the last calling level, when the string is finally rejected.

This sort of sequence of actions creating transitions whichcall other actions, and
replace the existing transitions, allows the automaton to control and ‘count’ existing mis-
matches.

If a distancek is needed, we will have to considerk different adaptive actions, so
that every action will delete itself when executed, and create another action, the next in
sequence, in order to replace it. This way, we may keep track of the distance, as mentioned
before, by ‘counting’ the number of actions already performed.

This sort of behavior has some advantages, we can significantly reduce the number
of control states needed. Actually there must be one controlstate, as showed by the
example of figure 4, but it can become clearer and more manageable if we create more
than one state. Splitting the mistakes from the states, in order to keep a different state to
eachk. Doing so allows us to just ‘connect’ or ‘disconnect’ existing transitions, becoming
easier to manipulate the state-transition table.

5. Conclusions

This paper presented an alternate way to reduce the number ofstates of a finite-state
automaton, when dealing with approximate string matching.The actual ‘size’ of the
automaton model can be reduced to a level very close to the onecorresponding to exact
string matching.

In fact, the number of initial states is the same of the finite-state automaton for
exact match, plus one state. At each mismatch found, the transitions of the automaton
are replaced by others, in order to keep control of the numberof mismatches, until the
number of mismatches reachesk, then no other mismatch will be accepted (because the
adaptive transitions are replaced by simple transitions).

However, such a reduction has a price: we will need to replacethe transitions at
execution time (deleting the existing, and creating othersto take their place), despite the
fact that it will only be executed when needed. But if we createone state to each level of
mistake (k states at all), we will be able manipulate the state-transition table much more
easily. In this paper we have not addressed directly the time-complexity of the solution,
but we intend to do it.

There are other research studies taking into account this adaptive feature, and we
noticed that there are results and practical simulations that uses it, such as [11]. How-
ever, they share a common focus, they are connected to the processing of context-free or
context-sensitive languages [6].

References

[1] Knuth, D. E., Morris, J. H., Pratt, V. R., Fast pattern matching in strings.SIAM J. Comput.
6, 2 (1977) 323-350.



[2] Boyer, R. S., Moore, J. S., A fast string searching algorithm. Comm. ACM 20, 10(1977)
62-72.

[3] Aho, A. V., Corasick, M. J., Efficient string matching: an aid to bibliographic search.
Comm. ACM 18, 6(1975) 333-340.

[4] Holub, J., Reduced Nondeterministic Finite Automata forApproximate String Matching.
Proceedings of the Prague Stringology Club Workshop ’96, Czech Technical Univer-
sity (August 1996) 19-27.

[5] J. J. Neto, Adaptive Rule-driven Devices - General Formulation and Case Study.CIAA
2001: Proceedings of the 6th International Conference on Implementation and Ap-
plication of Automata (2001).

[6] J. J. Neto, Adaptive Automata for Context-Depend-ent Languages.ACM SIGPLAN No-
tices 29, 9(Sep-tember, 1994) 115-124.

[7] J. J. Neto; C.A. B. Pariente, Adaptive Automata - a revisited proposal.CIAA 2002: Pro-
ceedings of the 7th International Conference on Implementation and Application of
Automata - Lecture Notes in Computer Science 2608(July, 2002) 158-168.

[8] J. Hopcroft, and J. Ullman, Formal Languages and their Relation to Automata. Addison-
Wesley. 1969.

[9] H. Lewis, and C. Papadimitriou, Elements of the Theory of Computation. Prentice-Hall.
1998.

[10] Navarro, G., A guided tour to approximate string matching. ACM Computing Surveys
33, 1(March, 2001) 31-88.

[11] R. Rubinstein, and J. N. Shutt, Self-modifying finite automata.Proceedings of the 13th
IFIP World Computer Congress, 1994 (1994) 493-498.


