
Adaptive Languages and a new Programming Style

APARECIDO VALDEMIR DE FREITAS 1,2 , JOÃO JOSÉ NETO 1

1 Escola Politécnica da Universidade de São Paulo
Depto. de Engenharia de Computação e Sistemas Digitais

Av. Prof. Luciano Gualberto, trav. 3, No 158.
Cidade Universitária – São Paulo - Brasil

2 Universidade Municipal de São Caetano do Sul
Instituto Municipal de Ensino Superior de São Caetano do Sul

Av. Goiás No 3400 – São Caetano do Sul – CEP 09550-051 SP – Brasil
avfreitas@imes.edu.br and joao.jose@poli.usp.br

Abstract: - A programming style can be seen as a particular model of shaping thought or a special way of
codifying language to solve a problem. Adaptive languages have the basic feature of allowing the expression
of programs which self-modifying through adaptive actions at runtime. The conception of such languages
calls for a new programming style, since the application of adaptive technology in the field of programming
languages suggests a new way of thinking. With the adaptive style, programming language codes can be
structured in such a way that the codified program therein modifies or adapts itself towards the needs of the
problem. The adaptive programming style may be a feasible alternate way to obtain self-modifying consistent
codes, which allow its use in modern applications for self-modifying code.
Key-Words: - Adaptive Devices, Adaptive Programming Languages, Adaptive Programming Style.

1 Introduction
The essential concept characterizing an adaptive
device is its capacity to perform adaptive actions,
which can be understood as procedure calls, built in
the device and activated in reply to detected
situations requiring behavioral changes of it [1].
Described by a finite and well-defined set of rules,
such devices start operation at some pre-set initial
configuration. The clauses forming this set of rules
test the device current configuration and determine
its new configuration.
An adaptive device has a subjacent formalism, e.g.
an automaton, a grammar, a decision tree, etc. and
an attached adaptive mechanism that allows the
subjacent formalism to be dynamically changed [5].
Adaptive programming languages are adaptive
devices that use a conventional programming
language as its subjacent formalism.
The adaptive mechanism associated to a
programming language gives it the self-modification
feature.
Self-modifying programs have been used
extensively at the early years of Computation,
motivated by the lack of storage in ancient
computers.
However, difficulties to read and maintain self-
modifying code motivated the use of more reliable
static-code-based avoiding self-modifications
techniques instead [9].
Many recent works have been published in which

self-modifying code is used in a new way. Among
them, we may list: code protection, program
compression, protection against undesired reverse
engineering and code optimization [10] [11] [12]
[13].
The self-modifying codes employed in machine
languages are usually hard to write and to keep [16].
The technique we advance, however, employs the
adaptive technology considering the use of adaptive
functions specified by fixed and well-defined rules
and can thus assure greater usability to the solution
proposed.
With the adaptive programming style, general
programs codified in programming languages can be
conveniently structured so that the code can change
or adapt itself towards the specific problem.
The adaptive programming style automatically leads
programmers to non-conventional reasoning since a
self-modifying behavior is promoted by adaptive
actions.
Such a characteristic is typical of adaptive languages
and demands special attention of the developers,
who must anticipate the effects of adaptations on the
executing code.
In this paper a new programming style based on
code adaptivity is suggested.
Such a style will allow developing projects to use a
self-modifying code in a consistent and disciplined
way.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 220

2 Adaptive Programming Style
Paradigms describe theories and procedures that,
when used together, can represent a way of
organizing knowledge.
There is a natural learning in accepting the
paradigms that match our way of thinking and, as a
matter of course, in rejecting new, different
paradigms, or – in some way – models that clash
with the way we think. The more attached we are to
a given way of thinking, the more resistance we will
oppose to any evidence or arguments against it.
Among the different ways of making a paradigm or
way of thinking known, language assuredly counts
amid the most representative.
The language through which thought is expressed
essentially reflects the idea’s nature. The association
between thought and language becomes even more
critical when we extend the concept to the field of
programming languages. So, the language used by a
programmer in solving a problem is closely related
to his way of thinking or implementing the solution
to a problem [2].
When the target described by a paradigm contains
the items and relationships present in the problem’s
field of interest, the task of modeling a solution in
that field is considerably simplified.
For example: the logical paradigm tends to
materialize the solution to a problem by composing
the predicates and relations, while the functional
paradigm focuses use and composition of functions.
If we are tackling a programming language which
allows direct representation of array models, the
solution to the problem involving matrix arithmetic
will be much simpler.
On the other hand, if the programming language to
be used doesn’t directly abstract the problem’s field
entities (here, the matrices), the solution must be
attained through simulation of such entities with the
help of elements available in the language. This task
makes it harder to implement the process and
reduces the solution’s degree of expression since the
programmer’s way of thinking will not be directly
mapped in the elements of the implementation
language [2].
After these considerations, we can infer that
programming languages involving written solutions
to the problems direct the programmer’s mind so
much that he will deal with the problem according to
the view the language paradigm imposed on him.
It is quite common to run across programmers
dealing for so long with a given programming
language the paradigm of which has so strongly
associated with their way of thinking that the

solutions they come up with are invariably modeled
on the constructions available in the language
paradigm. These programmers most often have a
hard time struggling to break their usual paradigm
and start employing other programming paradigms.
The new reasoning form required by adaptive
technology and self-modifying programming
motivates a new programming style, since the
behavior of programs written in adaptive languages
depends on the adaptive functions stating the way
code is dynamically modified.
In non-adaptive programs, the static code is never
modified in runtime, allowing traditional and well-
accepted software engineering methodologies to be
applied.
In adaptive programming, however, the several
runtime instances of the running code, generated by
the adaptive functions, must be considered.
Therefore, adaptive programming requires non-
conventional programming methods, which is a
subject to be further investigated.

3 Adaptive Languages
Adaptive technology refers to the techniques and
methods associated with the adaptive devices’
practical applications. Chronologically, such devices
came about along researches in the field of formal
languages and automata [3] [4].
The formalism, however, lays open instances which
may apply to several other fields [5].
Formalisms based on state machines are tools often
used to describe and model systems. At each
operation stage in these machines, the devices take
some configuration representing the whole lot of
information stored so far by the machine [1].
Programming adaptive languages are adaptive
devices using a conventional programming language
as an underlying mechanism. As their execution
runs, the program written in an adaptive language
will uncover a self-modifying behavior by activating
adaptive actions.
Adaptive actions represent the execution of adaptive
functions. When such functions are well-designed,
they allow self-modifying code to be used in a better
way.
While executing an adaptive function in some instant
ti, a particular code instance Ci is passed to a
function which generates another code instance Ci+1
by executing elementary adaptive actions
responsible for applying editing primitives to the
code being executed.
We may define an adaptive function F on self-
modifying code through the following application:

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 221

F : D → D
where D represents the set of host language code
used as the subjacent formalism of the adaptive
language.
Adaptive function F acts on a domain representing
the set of codes in the subjacent language.
The subjacent language may be selected from any
paradigm. In this paper, we have chosen a Lisp
dialect only for experimental purposes, without any
explicit preference for the functional paradigm [6].
That being said, we will set out from a functional
nucleus based on untyped lambda calculus which
will act as an interpreter of the language the user will
codify his programs with [7].
Upon this basic functional nucleus, we will project
an extensible adaptive layer which will evaluate
adaptive action calls responsible for the code self-
modification.
Adaptive formalisms embodied in already existing
programming languages (here, a functional
language) will display, at first, a code block which
may be directly processed by the basic functional
nucleus interpreter until the execution of some
specified adaptive action in the program represented
in this code block takes place.
By processing the adaptive actions, a new instance
of the program is reached (in functional language,
we mean) and the operation is once more switched
to the functional nucleus, which will take the
operation on.
To process our functional adaptive language, there is
required a processing environment made up by a
functional nucleus and a control module –
represented by the adaptive machine – to which will
go the responsibility of managing the operation of
the self-modifying codes written in this language.
Thus, the functional nucleus will look like the
classical functional languages Lisp, which renders
unnecessary the formal specification of host
language (either syntactic or semantic), since the
adaptive functions will be defined by elements made
available by classical functional languages adopted
as underlying mechanism.
As the underlying language used in this study is
based on expressions, any program written in this
language may be reduced to a single expression (the
first element denoting a function, which can be
composed (nested) from several other expressions
(native or codified by the user).
In order that the adaptive functions may produce the
code self-modification, we must somehow address
the expression of the source program undergoing
adaptiveness and change them by means of the
elementary action calls existing in the adaptive

layer. Such elementary actions, at runtime, will
perform the inclusion, exclusion or alteration of the
expressions according to convenience to the
particular problem at issue.
Viewing that the expressions corresponding to the
codes of programs written in underlying language
show the tree structure, it is possible to identify
every node of the tree with the respective opening of
brackets – which stand for calls of components
functions – through labels that enable to carry out
the references.
In the project of adaptive functions it is enough to
link the labels to the expressions actually taking
part in the code self-modification.
It becomes then possible – by means of labels
associated with the several functions (native or
defined by the user) composing the user’s code – to
design the adaptive functions – responsible for the
self-modification of the program – the behavior of
which will be similar to the classical procedures of
tree edition.
Therefore, in a way analogous to the processing of
nodes in a tree, in our adaptive language model, the
adaptive functions will establish a “string-
processing” in the lambda expression
corresponding to the program, creating a new string
(or a new lambda expression) adhering to the labels
addressed by the adaptive actions.

4 Adaptive Expressions
Adaptive expressions are common expressions built
in the host language displaying calls of adaptive
functions (adaptive actions) with the responsibility
to implement the self-modifying behavior typical of
adaptive languages.
By composing the library functions present in the
device adaptive layer, it is possible to define the set
of elementary actions responsible for the
consultation, addition and elimination of the
underlying language functions, which, at runtime,
will promote the code adaptivity.
To exemplify the use of adaptive functions, let us
consider the calculation of nth in the Fibonacci
sequence.
Fibonacci numbers are defined recursively by the
equations: F1 = 1 , F2 = 1 , Fi = Fi-1 + Fi-2 , i > 2.
There follows a functional solution to the Fibonacci
series:
(define (fib n)

(if (<= n 2)
1

 (+ (fib (- n 2)) (fib (- n 1)))
)

)

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 222

Let us now observe the solution to a problem using
the adaptive style. The adaptive language will be
processed by an adaptive environment requiring
from the user the source text corresponding to the
program’s initial instance and its parameters.
This source text will be saved in an area of the
adaptive layer we will call buffer. The area relative
to the parameters will be called param.
Thus, at the time of starting the adaptive code, the
following save operation will be processed.

 (set 'buffer (load "fib_adapt.lsp"))
(set 'param (load "param.lsp"))

At the beginning, the adaptive environment will
interpret the initial code instance, generating an
equivalent in lambda expression and updating the
buffer variable.
For instance, to make the calculation for the
Fibonacci number for value 10, the underlying
language interpreter will evaluate:

> (eval buffer 10)
55

To reason adaptively, we can consider our initial
source program (fib, for our purposes) as a function
capable of calculating, in a simple way, the
Fibonacci number for values 1 and 2. For values
over 2, the fib function requires adaptation.
The initial code, then, must be conveniently
modified by a call of adaptive function (here named
f_adapt1), which will account for the instance self-
modification of the initial code.
An analogy can be drawn in this case between the
adaptive style and the Mathematical Induction
Method, which – based on the Finite Induction
Principle – is often turned to demonstrate the facts
referring to infinite sequences.
Using such analogy, it is possible to associate the
induction basis with our initial version of the code
and the inductive step with the successive adaptive
function calls at runtime, as shown in Fig-1.

Fig-1 – Analogy between Inductive Step and Adaptive Actions

These considerations made and by naming the
adaptive function f_adapt1, the initial code, in the
light of the adaptive style, will be defined as:
(define (fib n)

 rot1: (if (<= n 2)

 1

Induction
Basis

 (f_adapt1) Inductive

Step
)

)

After the translation as lambda expression, the
adaptive device will relay the control to the
underlying language interpreter by means of
function:

(eval buffer <param>)

The initial code will thus be conveniently modified
by the function call adaptive function f_adapt1,
responsible for the self-modification of successive
code instances, the project of which will be
revealed further ahead.
Considering that the image of the initial code is
saved in the buffer variable of the adaptive layer,
this image must be modified by the adaptive call (in
which the code self-modification will take place).
The function f_adapt1 will process the switching of
context from the underlying layer to the adaptive
layer.
Our adaptive function can be specified by the
following rules:
;; adaptive code
(define (f_adapt1)
 (insert_after func rot1) ;;node insertion rule
 (delete rot1) ;;node delete rule
)

The adaptive machine will process the adaptive
function f_adapt1 so as to insert func function after
rot1 label in order to eliminate rot1 as the next step
(rot1 corresponding to if expression in the initial
code instance).
The func function may be represented by the code:

(define (func n)
(+ (fib (- n 2)) (fib (- n 1))

)
The adaptive machine will call the underlying
interpreter to interpret func and will save the
corresponding lambda expression in a work field
within the adaptive environment.
After the processing of adaptive action f_adapt1, a
second instance of the source code is then created
and the control returns to the underlying interpreter
to carry the program operation on.
Here is another example to illustrate the concept of

Induction Basis
Initial Property:

P (0)

Instance of Final
Code

Instance of
Initial Code

Inductive Step Adaptive Actions

Final Property:
P(n)

Data
evolution

Code
evolution

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 223

adaptive expressions. Let us consider the function
add_list which returns the sum of elements on a
list.
At each recursive instance of function add_list, a
new part of the sum is created, without – therefore
– any communication of data among the instances
(only the value of the sum being returned), which
proves the non-existence of side effects.
The solution adopted to the problem of the sum of
the elements on a list is typically functional. It is
time to consider the application of the adaptive
style to the problem. The initial code can be defined
by:
(define (soma_Lista L)

 rot1: (if (= L nil)

 rot1: 0

rot2: (f_adapt2)

)
)

The initial instance is capable of returning the sum
of the elements on the list, according to the code
above, only if this is empty, obviously returning to
value zero.
If the list passed as parameter is not empty, the
adaptive function f_adapt2 will be called in order to
modify the initial code, represented by a lambda
expression. In this case, everything takes place as if
the code had to learn “something new” or to “adapt
itself” to deal with parameters of non-empty lists.
Viewing that, in the adaptive solution, the initial
instance is restricted to a limited situation (empty
list), its contents will be represented by fewer code
lines than the functional solution defined previously.
The adaptivity of the solution, therefore, will be
materialized as soon as the function f_adapt2 is
called.
While no adaptive call is effected, the processing of
the underlying language will follow the ordinary
way corresponding to the execution of an usual
functional language.
The following may be the contents of our adaptive
function f_adapt2:
 (define (f_adapt2)
 (insert_after '((setq total) (+ (first L)

(soma_lista (rest L))) rot1)
 (delete rot2)

)
As the result of the application of adaptive function
f_adapt2 on the instance of initial code, a new
instance of code C2 will be created and reflected on
the contents of the buffer variable under the control
of the adaptive device.

The adaptive machine, after generating the new
instance C2 (the result of the application of adaptive
function f_adapt2), will return the contents of the
updated buffer by means of the adaptive action and
take the program operation on.

5 Further Considerations
Self-modifying codes, especially those used in low-
level languages, are generally hard to write,
document and keep.
Our proposal, however, turns on the use of adaptive
technology, which employs adaptive functions to
this end. These are designed according to well-
established rules that, if applied carefully, insure
greater usage capacity to the suggested mechanism.
As a rule, the program is divided into blocks, in a
top-down methodology. With the adaptive
languages, a program may be structured through
bottom-up techniques, with the program modifying
towards the specific code that solves the problem.
Since the code undergoes self-modification with the
adaptive languages and as a matter of course there is
a possibility of a burst in code space and time, it is
wise to set limits to the operation executed by the
adaptive actions, so that alterations may be predicted
and controlled.
To reach this goal, it is highly recommended to
develop a study determining the growth rate of the
code in order to measure the code self-modification
resulting from the successive application of adaptive
actions.
Such limits, along with the respective analytic
functions of code and time growth, must constitute a
part of a design method of adaptive functions to be
developed in future articles.
To make the project of adaptive functions lighter for
the designer, the adaptive environment is required to
supply tools that refine the dynamic code generated in
this kind of programming, such tools having to
control all the code regions subject to alterations,
pointing out in a likewise dynamic way the parts of
the program liable to adaptivity.

6 Conclusions
The examples included in this article show that the
use of adaptive languages entails the development of
a particular way of thinking and reasoning – natural
and spontaneous – as a consequence of the
incorporation of the self-modifying mechanisms
present to the adaptive technology into the code.
This way of thinking implies envisaging a new
programming style, since the behavior of the
adaptive devices is directly associated with a set of
rules that defines it, and undergoes changes as the
code evolves.

Induction
Basis

Inductive
Step

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 224

Such feature, typical of the adaptive devices,
requires special care from anyone developing
applications of this kind, such as a reasoning style
and a programming discipline capable of predicting
the effects of the adaptive actions on the behavior of
the device.
In the case of adaptive languages in particular, the
first step to follow is to analyze meticulously the
first instance of the program comprising the written
code in the adaptive language. In other words, it
takes a lot of attention to define the adaptive
program’s induction basis.
Among the several functions comprising the
instance of the initial code, those likely to take a role
in some adaptive action must be selected and linked
to some form of reference (necessarily present in the
underlying language), applying, for example, the
mechanism of labels illustrated in this article.
From this study, it is likely to result the inductive
step of the adaptive program project, a complement
to the process of self-modifying programs project
put forth in this article.
This paper has shown that adaptive techniques may
be a feasible way to build consistent self-modifying
programs provided that some discipline is imposed
to the use of language’s adaptive mechanism.
There are many subjects that require further
improvements, such as: a more detailed method for
designing and checking reliable self-modifying
code.
Tools and environments must also be developed to
support self-modifying programs to be developed
and debugged.
Another target for a near future is to design and
implement a programming language with adaptive
features which will give the programmers an
adequate notation for expressing dynamically-
changing programs in a reliable way.
Obviously, further research involving subjacent
languages from different paradigms will be essential
to build a well-founded technology based on
programming language adaptivity.

References:
[1] Neto, João José - Adaptive Rule-Driven Devices

- General Formulation and Case Study. Lecture
Notes in Computer Science. Watson, B.W. and
Wood, D. - Implementation and Application of
Automata 6th International Conference, CIAA
2001, Vol.2494, Pretoria, South Africa, July 23-
25, Springer-Verlag, 2001, pp. 234-250.

[2] Timothy A. Budd - Multiparadigm
Programming in LEDA, Oregon State
University, Addison-Wesley Publishing
Company, Inc, 1995.

[3] Neto, João José - Contribuição à metodologia de
construção de compiladores. São Paulo, 1993,
272p. Thesis (Livre-Docência), Escola
Politécnica, Universidade de São Paulo. (in
Portuguese)

[4] Neto, João José - Adaptive Automata for
Context -Sensitive Languages. SIGPLAN
NOTICES, Vol. 29, n. 9, pp. 115-124,
September, 1994.

[5] Pistori, Hemerson – Tecnologia em Engenharia
da Computação: Estado da Arte e Aplicações.
Tese de Doutorado – Escola Politécnica da
Universidade de São Paulo – 2003. (in
Portuguese)

[6] Rocha, Ricardo Luis de Azevedo da e Neto,
João José - Uma proposta de linguagem de
programação funcional com características
adaptativas. IX Congreso Argentino de Ciencias
de la Computación, Argentina, 6-10 Outubro -
2003. (in Portuguese)

[7] Freitas, A. V. - Neto, João José – Adaptive
Device with underlying mechanism defined by a
programming language - 4th WSEAS
International Conference on Information
Security, Communications and Computers
(ISCOCO 2005).

[8] Barendregt, H.P. - The Lambda Calculus: its
syntax and semantics – (2nd ed.), North-Holland,
1984.

[9] Philip K. McKinley, Seyed Masoud, Sadjadi,
Eric P. Kasten, Betty H. C. Cheng – Composing
Adaptive Software - Michigan State University -
IEEE Computer Society – 2004.

[10] Anckaert B., Madou M. and Bosschere K.D. – A
model for Self-Modifying Code - Proceedings of
the 8th Information Hiding Conference, 10-12
July 2006.

[11] Madou M., Anckaert B., Moseley P. Debray S.,
Sutter B. D., Bosschere K. – Software Protection
through Dynamic Code Mutation – Conference
International Workshop on Information Security
Applications – WISA 2005, LNCS 3786 pp 194-
206.

[12] Yamamoto L., Tshudin C. – Harnessing Self-
Modifying Code for Resilient Software – Proc.
2nd IEEE Workshop on Radical Agent Concepts
– 2005

[13] Giffin J.T., Christodevescu L.K., Strengthening
Software Self-Checksumming via Self-
Modufying Code – 21st Annual Computer
Security Applications Conference – December
5-9,2005 – Tucson, Arizona.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Tenerife, Canary Islands, Spain, December 16-18, 2006 225

