
CONCEPTION OF ADAPTIVE PROGRAMMING LANGUAGES
Aparecido Valdemir de Freitas1,2 , João José Neto 1

1 Escola Politécnica da Universidade de São Paulo
Depto. de Engenharia de Computação e Sistemas Digitais

Av. Prof. Luciano Gualberto, trav. 3, No 158. Cidade Universitária - São Paulo – Brasil
2 Universidade Municipal de São Caetano do Sul

Instituto Municipal de Ensino Superior de São Caetano do Sul
Av. Goiás No 3400 – Vila Barcelona – São Caetano do Sul – CEP 09550-051 - São Paulo – Brasil

avfreitas@imes.edu.br and joao.jose@poli.usp.br

ABSTRACT

Adaptive devices show the characteristic of dynamically
change themselves in response to input stimuli with no
interference of external agents. Occasional changes in
behaviour are immediately detected by the devices, which
right away react spontaneously to them. Chronologically
such devices derived from researches in the field of
formal languages and automata. However, formalism
spurred applications in several other fields. Based on the
operation of adaptive automata, the elementary ideas
generating programming adaptive languages are
presented.

KEY WORDS

Adaptive devices, self-modifying devices, adaptive
automata, adaptive programming language.

1. Introduction
The fundamental concept supporting adaptive technology
rests on the ability of such devices to perform adaptive
actions, which may be seen as internal procedures to the
devices activated in response to the detection of situations
requering behavioral changes. [1]

To a given current configuration and a given stimulus
taken from its input, the device – through the formal
machine – is moved to a new configuration. Using a finite
well-defined set of rules, such devices start operation at
some initial configuration. The clauses making up this set
of rules test the device current configuration and lead it to
a new situation.

Interest in self-modifying software has increased and
adaptive programming is aimed at the problem of
producing software with self-modification behavior. Two
segments in the computing field are driving this
development. First is the emergence of ubiquitous
computing, and second is the growing demand for
autonomic computing. [8] [9] [10] [11] [12]

Our work differs of most of the research published in the
area of self-modifying software, since it is based on
devices whose behavior relies on the operation of
subjacent non-adaptive devices, which incorporate a finite
and well-defined group of self-modifyng rules. [13]

2. Adaptive Automata
Adaptive automata are special adaptive devices whose
underlying formalism is the structured pushdown
automaton. Their operation corresponds to a sequence of
successive evolutions performed by an initial structured
pushdown automaton processed by adaptive actions. To
each adaptive action, a new automaton originates,
keeping on the treatment in the input chain [1]

To demonstrate the operation of adaptive automata, there
follows an implementation of language recognition
anbncn, n being > 0, which can be mapped by an
automaton whose task is to recognise chains ‘abc’,
‘aabbcc’, ‘aaabbbccc’ and so forth and to reject the
others. Illustration 1 shows the frame of the automaton to
be modelled on the problem.

a) ial automaton for anbncn, n being =1.

b) Auto n after the elimination of second ‘a’.

c) A

Illustration 1

A 2 Ba b c
1

A

F

cA
2

a 1
b

b

c

B

3 4

530-807 453
mato
a,
Init
a, F
utomaton after the elimination of third ‘a’

 – Adaptive automaton for the recognition of chains
expressed as anbncn, n being > 0.

b

c2

a
1

b
c

B

3 4

5 6

cb

debbie

debbie

If the language to be recognised were defined by a1b1c1,
the finite automaton in question might be represented by
states (A,1,2,B), A being the initial state and B the state
of acceptance, and by transitions (A,’a’,1), (1,’b’,2),
(2,’c’,B). We will label this initial finite automaton AF1.
(Illustration 1-a).

Analogously, according to Illustration 1-b, for the
language a2b2c2, a new finite automaton (AF2) would be
needed, represented by a new set of states (A,1,2,3,4,B)
and also a new set of transitions ((A,’a’,1) , (1,’a’,1) ,
(1,’b’,3) , (3,’b’,4) , (4,’c’,2) , (2,’c’,B)).

To make the recognition of language anbncn general, we
can structure an adaptive automaton formed by the space
of finite automata AF1, AF2, ... , AFn, in such a way that –
starting with initial finite automaton AF1 and going
through adaptive functions calls – the device may evolve
to successive configurations AF2, AF3,.., AFn , while the
input chain is processed step by step.

The adaptive actions will make a dynamic rearrangement
of the device, with no concurrence, therefore, of external
agents. [2]

In order to form a more substantial idea of these
concepts, we will include in the transition (1,’a’,1) of AF1

initial automaton an adaptive function call, identified as
F, to be performed before processing the corresponding
transition. The transition will be identified as
((F) , (1,’a’,1) , ()). The blank list, specified on the right
of the transition, shows that, in this instance, there will
not be any adaptive function calls after the performance
ot the automaton usual transition.

According to the frame shown in Illustration-1, to each
atom ‘a’ consumed at state 1, new states at added in
convenient positions, new transitions are appended and
one is eliminated as the result of F adaptive function
call.

This adaptive function generates at first two new states
(3 and 4), another transition consuming ‘b’ from state 3
to state 4, still another consuming ‘c’ from state 4 to state
2, and eliminates the transition consuming ‘b’ from state
1 to state 2. (Illustration 1-b)

Therefore, at, first call, F adaptive function is made up
by the following elementary actions:

+ Transition (() , (1, ’b’, 3), ())
+ Transition (() , (3, ’b’, 4), ())
+ Transition (() , (4, ’c’, 2), ())
- Transition (() , (1, ‘b’, 2), ())

Once the additon of the new states 3 and 4 is provided,
the position where the next two states are to be included
has to be updated as well. At the first call of the adaptive
function, states 1 and 2 are taken for parameters. In the
next evolution of the automaton, states 3 and 4 are taken
for parameters and between then two other new states
have to be inserted: 5 and 6, for instance.

In general, the F adaptive function may be specified as
follows: Let i and j be states of any adaptive automaton
in which is present the configuration:

(i,’b’) → j e (j,’c’) → k

In the initial situation, for instance, states i and j
correspond to states 1 and 2. In the following evolution, 3
and 4; in the next 5 and 6, and so forth.

To furnish the automaton with self-modifying features,
the F adaptive function needs to search the adaptive
automaton in order to determine states i and j, between
which the new states and the new transition will be
inserted and needs moreover to make up a list of
elementary adaptive actions which will conduct
consultations and explicit changes in the adaptive
automaton’s current configuration.

Considering that the evolution of the automaton will
bring about new states and transitions, our elementary
adaptive actions will handle several different variables, to
be automatically filled, with to explicit request, and with
exclusive values not yet employed in the automaton
current definition. We will label these variables m* e n*
and will call then generators.

Thus, for any i and j adaptive automaton’s states, the
mapping will read:

(i,j) : m*,n*
which corresponds, during the automaton’s evolution to
the mapping below:
(1,2): m*=3 , n*=4 ; (3,4): m*=5 , n*=6 ; . . .
In our example, F adaptive function will made up by the
following elementary actions:
? [(i,’b’) → j] // consultation action delivering trasnsitions

// (i, ‘b’, j)

? [(j,’c’) → k] // consultation action delivering trasnsitions
// (j, ‘c’, k)

// i and j are found...

- [(i,’b’) → j] // transition delition (i,’b’,j)

+ [(i,’b’) → m*] // transition addition (i,’b’, m*)

+ [(m*,’b’) → n*] // transition addition (m*,’b’, n*)

+ [(n*,’c’) → j] // transition addition (n*,’c’, j)

The adaptive device’s initial set of productions will be
represented by:
‘((() (A ‘a’ 1) ())

(() (2 ‘c’ B) ())
((F) (1 ‘a’ 1) ())
(() (1 b ‘2’) ())

)
After the device’s first evolution, the following
productions will come out:

‘(
(() (A ‘a’ 1) ()) kept
(() (2 ‘c’ B) ()) kept
((F) (1 ‘a’ 1) ()) kept
(() (1 ‘b’ 2) ()) eliminated
(() (1 ‘b’ 3) ()) inserted
(() (3 ‘b’ 4) ()) inserted
(() (4 ‘c’ 2) ()) inserted
)

454

In the device’s second evolution, productions will be as
follows :

‘((() (A ‘a’ 1) ()) kept
(() (2 ‘c’ B) ()) kept

((F) (1 ‘a’ 1) ()) kept

(() (1 ‘b’ 3) ()) kept

(() (4 ‘c’ 2) ()) kept
(() (3 ‘b’ 4) ()) eliminated
(() (3 ‘b’ 5) ()) inserted

(() (5 ‘b’ 6) ()) inserted
(() (6 ‘c’ 4) ()) inserted

)

A finite automaton is defined by a quintuple (Q, Σ, δ, qo,
F) [3] and may be represented in list notation as shown:

AUTOMATON: (List_of_States

Alphabet

List_of_Transition

Initial_State

List_of_Acceptance_States

)

List_of_Transitions : (Transition Transition Transition . . .)

Transition: (State_Origin Atom State_Destination)

To define the adaptive automaton, transitions need to be
redefined so as to support the adaptive actions. Thus, each
transition of the automaton will be redefined by:

Transition: ((AA)

 (State_Origin Atom State_Destination) (AP))

AA representing the previous adaptive action and AP for
the following adaptive action.

These adaptive actions (both previous and following), will
be defined by:

(define Name_Adaptive_Function ((Parameters_List)
variables generators List_Elementary_Actions))

Once heed is given to these points, the adaptive automaton
may be represented by means of function anbncn, which
takes as parameters the entrance chain, the automaton’s
initial state list, the initial state, the transition’s initial list,
the alphabet, and the list of acceptance’s final states:
(anbncn

'(a a a b b b c c c);;input chain

'(A 1 2 B) ;;initial state list

'(A) ;; initial state

'(

 (() (A a 1) ())

 (() (2 c B) ())

 ((F) (1 a 1) ())

 (() (1 b 2) ())

);; transition’s initial list

'(a b c) ;; alphabet

'(B) ;; list of acceptance’s
states

)

The list of parameters previously described is consistent
with the framework used to represent the adaptive
automata, since there is an instance of adaptive transition
– represented by the list ((F) (1 a 1) ()) – in the
transition’s initial list.
The functional program may be represented by function
anbncn, which will take as parameters the elements bound
to make up our finite adaptive automaton:
(define

(anbncn

input_chain

initial_state_list

initial_state

transition’s_initial list

alphabet

list_of_acceptance’s_states

)

)

Function anbncn starts operation first as if the usual finite
automaton were being processed .

The program first positions the machine at initial state and,
from then on, processes the entrance chain.

Once the atom is read and the current state defined, there
starts a search of transitions defined as argument. If the
transition answering to the conditions of the moment are
non-adaptive, the automaton will evolve naturally, just like
any common finite automaton.

However, if the transition attending to the search
condition is adaptive, the program carries out adaptive
function calls, which may take place before or after the
execution of the non-adaptive transition. In our example,
the adaptive function is called before the execution of
adaptive transition and will be responsible for the
automaton’s new configuration.

It is possible to present the procedure for this function in
the following way:
;; place the machine at starting state

;; reading of entrance chain

;; search of transitions from current state and read atom

;; search, in case adaptive calls are found in the list of transitions

;; if there are adaptive calls, carry them out.

;; after the adaptive call, keep the automaton’s usual evolution

;; if there are adaptive calls after the transition, carry them out

;; after the processing of entrance chain

;; check is final state is one of acceptance
;; if so, then the chain has been recognised ...

For the adaptive treatment to be materialised in our
example, there must be defined the adaptive function
required to allow the device the self-modifying property.

Considering that the adaptive function will always be
made up of elementary actions of consultation, removal or
addition of transitions, it is expedient to have at disposal a
set of routines, which may be conveniently assembled to
implement the adaptive functions. Such set of routines
defines an “adaptive layer” responsible for encapsulating
the elementary adaptive actions.

455

3. The adaptive actions

As aforementioned, they are the adaptive function calls
(pointed out by adaptive actions) that will make the self-
modifying features of our device possible. These
functions will be made up by elementary function calls –
available on the adaptive layer -, which by means of the
basic operations of consultation, inclusion, and deletion of
productions will afford the adaptiveness to the device.

We will denote theses elementary actions ?adapt, +adapt
e –adapt, responsible respectively for the actions of
consultation, addition, and elimination of transitions from
the list of current transitions. [4]

Naturally, the elementary actions will be extracted from
the adaptive layer for each particular problem in the
convenient amount and sequence for the device adhesive
to the problem.

The consultation actions must likewise be tied to the
specific device, since they depend on each problem to be
dealt with. In other words, for each problem a different or
more convenient consultation must be specified in the list
of productions.

To generalise such consultation function, queries
modelled on pattern-matching may be specified so as to
be taken back to the list of productions that attends to the
consultation.

Thus to transfer the list of transitions from the adaptive
device along with the pattern ((*) (8,*,*) (*)) to function
?adapt on the adaptive layer, we will get as return all
transitions (adaptive or not) leaving from state 8.

Analogously, on passing the list of transitions of our
adaptive device, along with the pattern ((F) (*,’a’,*) (*))
to the ?adapt function of the adaptive layer, we will get
in return a list of all adaptive transition which call to F
adaptive function before conducting the non-adaptive
transition, when an ‘a’ atom is consumed.

If we transfer the list of transitions of our adaptive device
along with the pattern ((*) (*,*,*) (G)) to the ?adapt
function of the adaptive layer, we’ll get in return a list of
all adaptive transitions that call G adaptive function after
conducting any transition whatever.

The pattern ((*) (*, *, *) (*)) transferred with the list of
transitions of the device to the ?adapt function of the
adaptive layer, will return the list of all current
productions of the adaptive device.

As a rule, ?adapt function will take for parameter a query
pattern definition and the list of transitions of the device,
returning a list of transitions that attends to the previous
pattern, or else an empty-list, in case there has been no
matching..

In our example, the rules making up our adaptive function
may be implemented starting at the adaptive layer, as
follows:

Rule: Mapping with the Adaptive Layer

? [(i,’b’) →→→→ j]

(set ‘L1 (?adapt (((*),(*,’b’,*),(*)) , List_TR)))

// returns L1 with transitions (i, ‘b’, j) – bound to ‘b’ atom

? [(j’c’) →→→→ k]

(set ‘L2 (?adapt (((*),(j,’c’,*),(*)) , L1)))

// returns L2 with transition (j, ‘c’ , k)

// setting of states (i , j)

- [(i,’b’) →→→→ j]

(set ‘Lista_TR (-adapt (((),(i,’b’,j),()) , List_TR)))

// returns List of Transitions deleting transition

// ((),(i,’b’,j),())

+ [(i,’b’) →→→→ m*]

(set ‘Lista_TR (+adapt (((),(i,’b’, m*),()) , List_TR)))

// returns List of Transitions including transition

// ((),(i,’b’, m*),())

+ [(m*,’b’) →→→→ n*]

(set ‘Lista_TR (+adapt (((),(m* ,’b’, n*),()) ,List_TR)))

// returns List of Transitions including transition

// ((),(m* ,’b’, n*),())

+ [(n*,’c’) →→→→ j]

(set ‘Lista_TR (+adapt (((),(n* ,’c’, j),()) , List_TR)))

// returns List of Transitions including transition

// ((),(n* ,’c’, j),())

Considering that F adaptive function will operate ont the
automaton’s transition list, it is only natural for this
function that the list of transitions comprising the
respective changes determined by the elementary actions
of insertion or exclusion be transferred as a parameter.

F adaptive function may be defined in functional
notation as shown below:

;;--

;; Adaptive Function F

;;--

(define (F List_TR)

(set ‘L1 (?adapt (((*),(*,’b’,*),(*)) , List_TR)))

(set ‘L2 (?adapt (((*),(j,’c’,*),(*)) , L1)))

//(i,j) is returned

(set ‘Lista_TR (-adapt (((),(i,’b’,j),()) , List_TR)))

(set ‘Lista_TR (+adapt (((),(i,’b’, m*),()) , List_TR)))

(set ‘Lista_TR (+adapt (((),(m* ,’b’, n*),()) , List_TR)))

(set ‘Lista_TR (+adapt (((),(n* ,’c’, j),()) ,List_TR))))

It is quite clear that, having at our disposal an adaptive
layer with a set of elementary functions capable of
materialising the elementary actions, the definition of
adaptive functions will be easily specified, so much so
that the rules governing them are directly coded by the
respective calls of the adaptive layer.

Our adaptive layer must be broad enough to be used in
any other problem applying adaptive technology.

4. The Conception of Adaptive Languages
Based on the concepts of adaptiveness applied on
implementing language recognition anbncn, being n > 0,
we will outline our adaptive language by idealising, in a

456

way similar to the evolution of adaptive automata, a
programming language whose functions and code present
self-modifying behaviour.

We will use a functional language as a basis for the
incorporation of mechanisms of the adaptive formalism. [6]

Considering lambda calculus to be the basis for the
functional paradigm of the programming, a language
supporting lambda calculus will be taken as the core of
the proposed language. [5] [6]

The reason for such a choice rests on this language’s
better adherence to the concepts of adaptive technology,
sence this pattern favours the building of expressions
dealing with dynamic codes, as pointed out on the
example below:

> (set 'exp '(+ 3 4))

> (eval exp)

> 7

After these considerations, we will set off from a functional
nucleus based on the lambda calculus, which will serve as
an interpreter of the language coded by the user.

On this basic functional nucleus, an adaptive layer
evaluating adaptive action calls will be projected.

Once the adaptive actions are processed, a new instance
of the program is reached and the execution once again
switched to functional nucleus, which will proceed with
the execution.

The adaptive language, consequently, will be formed by
the space of codes LF1, LF2, ..., LFn, in such away that –
starting with initial language LF1 and through the
adaptive function calls – language may evolve to the
successive configurations LF2, LF3,.., LFn while the
execution is being processed. [4]

The proposed adaptive mechanism keeps a close structural
analogy with the adaptive device used as the example in item 2.

Adaptive formalisms materialised as programming
languages (functional languages in our instance) will
present as first a code block to be directly processed by the
basic functional nucleus interpreter until the execution of
some adaptive action specified int the pattern takes place.

In order to process our adaptive language, a processing
environment has to be created, made up of a functional
nucleus and a control module, to be represented by the
adaptive machine the duty of which is to evaluate the
adaptive calls.

A full functional program limits itself to the call of a single
function, made up of the composition of several other
functions.

To help visualise our functional program in the light of the
adaptive paradigm, some mechanism must be resorted to in
order to address each function making up our program
univocally. Such procedure must equally be applied to
every native function present in the language.

In our model, the functions making up our code will be
indexed by means of labels defined by identifiers.

As the functional program may be represented by a tree-
like structure, each label will stand for a node of this tree.

As long as the procedure enabling the binding of labels to
each function of the program suitable to take part in the
adaptive calls is defined, it is possible to determine the
adaptive functions to account for the adaptiveness of the
language code.

Since our functional basic nucleus is an interpreter of
lambda calculus, any function defined in the program may
be represented by a call in lambda calculus. For example:
> (define (func x) (+ x x))

(lambda (x) (+ x x))

> (func 3)

6

Any label can be attributed to the function by means of:
> (define (label rotulo x) (set rotulo x) x)

(lambda (rotulo x) (set rotulo x) x)

In this way, it is possible to associate any label with
function “func”, e.g.,
> (label ‘rotulo1 func)

(lambda ((+ x x))))

Function “func” then will be associated with label
‘rotulo1’.
> rotulo1

(lambda ((+ x x))))

> (rotulo1 3)

6

> ((lambda ((+ x x))) 3)

6

Another example shows a function that returns the sum of
squares.
> (define (soma_quad x y) (+ (* x x) (* y y)))

(lambda (x y) (+ (* x x) (* y y)))

> (soma_quad 2 4)

20

For any given adaptive function to change the function
code of the example, we have to address the function
undergoing self-modification in a univocal way, which
can be done by the call of label function of the adaptive
layer.
> (define (soma_quad x y) (+ (* x x)

(label ‘rot1 ‘(* y y))))

(lambda (x y) (+ (* x x) (label ‘rot1 (* y y))))

> ((lambda (x y) (+ (* x x) (label ‘rot1 (* y y)))) 2 4)

20

In this example, label ‘rot1’ has associated with function
(* y y). It is worth remarking that, although the
application of the label function of the adaptive layer has
changed the lambda expression, it has not borne the same
evaluation result, which proves that the labels associated
with the functions do not alter the semantic meaning of
the expression.

Still keeping the data from the example above, let a given
adaptive function access label ‘rot1’ and change the
function from (* y y) to (+ y y).

457

For this adaptive function to accomplish this alteration, it
is enough to consider the program lambda expression as a
list and to apply to it the elementary actions specified in
the adaptive function. In our instance, label ‘rot1’ must be
searched in the lambda expression and replaced by the
new expression.

The resulting lambda expression will then read:
> (define (soma_quad x y) (+ (* x x)

 (label ‘rot1 ‘(+ y y))))

(lambda (x y) (+ (* x x) (label ‘rot1 (+ y y))))

> ((lambda (x y) (+ (* x x) (label ‘rot1 (+ y y)))) 2 4)

12

In our model of adaptive language, therefore, the adaptive
functions will start a string processing in the lambda
expression corresponding to the program, and will
generate a new string adhering to the labels defined by the
adaptive actions. With this new instance in the program,
the control will be once more switched to the underlying
lambda calculus interpreter, which will carry on the
program execution.

At this point, it is required the implementation of a
control to ensure that the program’s new instance will
resume from the point of interruption and not from the
start of the program’s new instance. Moreover, the
adaptive device is expected to return to the new instance
all space of variables previously allocated by the
preceding instance.

5. Conclusion
It has been shown that adaptive devices are Turing-
powerful. The resulting generality of the model, its
learning capability due to its self-modification feature, as
well as the strength of its expressiveness make adaptive
devices very attractive and suitable to handle difficult
situations arisen when searching for computational
solutions for complex problems. [14]

This article exemplifies, by solving a particular problem
(anbncn), the use of adaptive techniques in a programming
functional language. The language thus obtained favours
the introduction of dynamic features in to language initial
code.

The problem brought to this article could have been solved
by resorting to the usual functional language, but the
example shown here was intended to make the application
of the adaptive technology in a programming language
easier to understand.

We believe to have demonstrated through the concepts and
procedures expounded in this article that implementing the
adaptive language is feasible and that it may consequently
be applied to more complex problems to which adaptive
technology is recommended.

Some experiments with the adaptive language project have
already been developed and for these implementations the
NewLisp environment is being adopted. [7]

Acknowledgement: Our thanks for the reviewers'
valuable comments that significantly improved this paper.

References
[1] Neto, João José - Adaptive Rule-Driven Devices - General

Formulation and Case Study. Lecture Notes in Computer
Science. Watson, B.W. and Wood, D. (Eds.):
Implementation and Application of Automata 6th
International Conference, CIAA 2001, Vol.2494, Pretoria,
South Africa, July 23-25, Springer-Verlag, 2001, pp. 234-
250.

[2] Neto, João José - Adaptive Automata for Context -
Sensitive Languages. SIGPLAN NOTICES, Vol. 29, n. 9,
pp. 115-124, September, 1994.

[3] Harry R. Lewis e Christos H. Papadimitriou - Elements of
the Theory of Computation. Second Edition. Prentice-Hall
Inc. 1998.

[4] Freitas, A. V. - Neto, João José – Adaptive Device with
underlying mechanism defined by a programming
language. - 4th WSEAS International Conference on
Information Security, Communications and Computers
(ISCOCO 2005) – Special Session Artificial Intelligence
and Soft Computing.

[5] Barendregt, H.P. - The Lambda Calculus: its syntax and
semantics – (2nd ed.), North-Holland, 1984.

[6] McCarthy, J. - Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part-I.
CACM 3,4 (1960), 184-195.

[7] Mueller, Lutz - NewLisp User’s Manual and Reference V.
7.50 – 2004 – www.newlisp.org.

[8] Philip K. McKinley, Seyed Masoud, Sadjadi, Eric P.
Kasten, Betty H. C. Cheng – Composing Adaptive
Software - Michigan State University - IEEE Computer
Society - 2004.

[9] Peter Norvig and David Cohn – Adaptive Software - PCAI
Magazine. Jan, 1997.

[10] Richard Taylor, Chris Tofts – Self Managed Systems – A
Control theory perspective - Trusted Systems Laboratory -
HP Laboratories Bristol - HPL-2004-49 - March 25, 2004.

[11] Naveen Kumar, Jonathan Misurda, Bruce R. Childers,
Mary Lou Soffa - Instrumentation in Software Dynamic
Translators for Self-managed Systems - University of
Pittsburgh and University of Virginia - WOSS'04, Oct 31-
Nov - Nov 1, 2004. - Newport Beach CA – USA

[12] Jackson, Quinn Tyler. Adaptive Predicates in Natural
Language Parsing Perfection, n. 4, 2000. -
http://members.shaw.ca/qtj/

[13] www.pcs.usp.br/~lta – Home Page of the Lab. of Language
and Adaptive Technologies – University of São Paulo.

[14] Rocha, R. L. A. e Neto, J. J. Autômato adaptativo,
limites e complexidade em comparação com máquina
de Turing. In: Proceedings of the Second Congress of
Logic Applied to Technology - LAPTEC'2000. SP
(in Portuguese). São Paulo, 2000.

458

