
Applying adaptive technology in data security

Éder José Pelegrini1 João José Neto1

1Escola Politécnica da Universidade de São Paulo

eder.pelegrini@poli.usp.br, joao.jose@poli.usp.br

Abstract
This paper proposes a new approach for data security and reports the application of adaptivity in the design

of an adaptive technology-based experimental cipher system. Our goal with this approach is to build a fast and
secure cipher system based on two practices: using the cipher key to encode part of the information on the
execution algorithm; and hiding another part of that information as controlled dynamic modifications imposed
through changes applied to the execution algorithm. Because of the interesting properties of this proposal,
authors expect the main ideas present in this paper be used in actual cryptosystems in a near future.

1. Introduction

A common sense in cryptography is that encrypting and decrypting methods be publicly

known, so its secrecy lies on the cryptography key. This idea is stated by Kerckhoff principle. The
alternative of keeping hidden the description of the algorithm in order to achieve security is
considered an ineffective strategy [Tanenbaum, 2003].

A publicly known algorithm allows cryptanalysts to explore its fragile points, i.e., knowledge
on the operation of the algorithm allow inferring more efficient ways for breaking the cipher than
simply doing exhaustive trials in order to determine the proper key. For example:
• The obsolete Caesar cipher accepts any integer number as a key. Its ciphering idea consists of

replacing each letter in a text with another one, displaced by a fixed amount in the alphabet
sequence [Bishop, 2002][Tanenbaum, 2003]. Actually, there are only twenty-six different
valid keys in this scheme, whose exhaustive trial may be easily performed.

• The RSA is an asymmetric cipher [Bishop, 2002][Rivest; Shamir and Adleman,
1978][Tanenbaum, 2003] whose security relies on the difficulty of the factorization problem
for large integers [Rivest; Shamir and Adleman, 1978]. Solving this problem requires
breaking the cipher, despite the difficulty of determining prime factors for large integers.
Modern crypto-algorithms use sophisticated sequences of operations in order to avoid such

attacks and increase their security. As an example, the AES algorithm [Bishop, 2002][Daemen
and Rijmen, 1999][Tanenbaum, 2003] is based on the Galois Field theory and uses multiple
rounds. On each round, substitution, transposition and exclusive-or operations are performed.

This paper presents a novel approach to perform data ciphering (and deciphering) through the
use of adaptive technology. It proposes a novel way for the design of a cryptosystem-like
ciphering system which hides part of the ciphering/deciphering logic in a way that both ensures
Kerckhoff’s principle and increases the difficulty to identify and explore its fragilities. Both the
information and the logic changes are based on the chosen secret key.

This method allows changing dynamically the hidden logic, driven by the contents of the
input text, making it harder to explore its fragilities. Adaptive Technology is used to achieve that
goal. Our proposal considers hiding part of the algorithm’s logic and changing it in order to get a
secure and fast ciphering algorithm for data security. Such approach can eventually be used as a

31 JPC2007

starting point towards the design of a full cryptosystem.
It is important to emphasize that the aim of our proposal is to illustrate the use of an adaptive

formalism to investigate new ways for achieving data security. For illustrating purposes only, a
simple ciphering system is proposed below by means of a very simple example, in order to
communicate ideas and validate concepts.

The remainder of this paper is organized as follows: section 2 presents motivations and
previous works; section 3 describes the formalism used in this paper; section 4 explains the
concepts and a way for building a cipher system based on adaptive technology; section 5 shows
and demonstrate a first development of a cipher system based on this approach; section 6
discusses the security of this approach; at last, section 7 concludes this paper, being followed by
the references.

2. Previous Work

Neto [2002] defined adaptive automata as self-modifying rule-driven devices based on

structured pushdown automata. In this publication, the classical adaptive automaton’s mechanism
is slightly modified in the proposal of the adaptive finite-state transducers.

Lewis and Papadimitriou [1981] and Neto [1987] state finite-state transducers as a formalism
similar to finite-state automata, except for the optional output associated to each transition. The
approach presented here is based on this formal model.

Bishop [2002], Tanenbaum [2003] present issues concerning modern cryptosystems. It is
easily possible to identify the gradual historical increase of complexity imposed to the
cryptosystem’s algorithm, in order to achieve proper security level.

3. Adaptive Technology

Adaptive Technology resulted from searching for formulations that be both simple and

sufficiently strong to represent and handle complex phenomena [Pistori, 2003]. It deals with the
application of formalisms and devices that react to external stimuli by dynamically activating self-
modification actions that change their behavior [Pedrazzi; Tchemra and Rocha, 2005].

Several traditional formalisms, such as finite-state automata, grammars, Markov chains,
Statecharts, decision tables and decision trees have their power and expressiveness significantly
increased when used as subjacent devices for this approach [Pedrazzi; Tchemra and Rocha, 2005].

Adaptive technology has already been successfully used in a wide range of applications, e.g.
robotic navigation, automatic musical composition, computer vision, pattern recognition, natural
language processing and compiler construction [Pistori; Neto and Pereira, 2006].

3.1. Finite-State Transducers

A finite-state transducer is a device similar to the classic finite-state automaton [Lewis and
Papadimitriou, 1981]. Apart of its language recognition purpose, a finite-state transducer is also
expected to convert its input into an output text [Neto, 1987].

A finite-state transducer may be described [Lewis and Papadimitriou, 1981][Neto, 1987] as a
6-tuple (Q, Σ, Λ, δ, q0, F), where: Q represents a finite, non-empty set of states; Σ represents its
input alphabet; Λ represents its output alphabet; q0 represents its initial state (q0 ∈ Q); F

JPC2007 32

represents a finite non-empty set of final states (F ⊆ Q); δ represents its transition function (δ : Q
× (Σ∪{ε}) → Q × Λ).

Finite-state transducers may be described by means of state transition diagrams, that are
directed graphs with input and output information associated to their transitions.

An operation cycle of a finite-state transducer consists of: reading an input symbol; using the
transition function to update the current state; and writing out some corresponding output symbol
if necessary.

In order to represent the execution of such machine, the concept of configuration is defined
for finite-state transducers [Neto, 1987] as a 3-tuple (current state, input string yet to be read,
output string generated so far). Let wiwi+1...wn be the part of the input string yet to be read and
u0...ui-1 the already generated output string. The computation step performed by the transducer by
applying some transition rule δ(q,wi) → (q’,ui) is represented by a move from its current
configuration to a next one: (q, wiwi+1...wn,u0...ui-1) ├ (q’, wi+1...wn,u0...ui-1ui).

3.1. Adaptive Finite-State Transducers
Adaptive finite-state transducers are self-modifying rule-driven devices based on finite-state

transducers. At the start of its operation, an adaptive finite-state transducer T may be viewed as an
initial finite-state transducer T0. Whenever a transition is executed, its behavior may change. So,
in operation, an adaptive finite-state transducer T describes a path (M0,w0,u0) ⇒ (M1,w1,u1) ⇒ …
⇒ (Mn,wn,un) , where w0w1…wn (n≥0) represent the input string, and uk (0≤k≤n) represent the full
output substring generated at each step k.

The basic mechanisms that allow adaptive transducers to perform self-modification are called
adaptive functions. Adaptive functions may be parametric, and must be declared apart of the
transducer’s definition.

A similar formulation, presented in [Neto and Pariente, 2002] for adaptive automata, defines
adaptive functions as collections of elementary adaptive actions. There are three different
elementary adaptive actions: insertion actions, that joins a specified transition to the set of
transitions defining the automaton; elimination actions, which remove a specified transition from
that set; and inspection actions, that searches that set for transitions matching some given pattern.

Calls to adaptive functions may be attached to the transducer’s transitions. In this case, they
are called adaptive actions. Adaptive actions are specified to execute before/ after the execution of
the associated transition [Neto and Pariente, 2002].

In order to represent transitions with optionally attached adaptive functions the following
notation is used: (q,wi)B → (q’,ui)A, where: q, q’ ∈ Q, wi ∈ Σ, ui ∈ Λ. B/A optionally specify
names of adaptive functions to be executed before/after the transition is applied, respectively.

Being extensions of adaptive finite-state automata, it is easy to show they have the same
power of Turing Machines [Rocha and Neto, 2000][Neto and Pariente, 2002].

4. Building Data Security Systems with Adaptive Finite-State Transducers

In this section we introduce finite-state transducers as the subjacent abstraction for the

implementation of ciphering systems whose desired behavior is being similar to that of a standard
cryptosystem: the transducer’s underlying finite-state automaton is used as part of the design of
ciphering functions. Afterwards, adaptive actions are added to its transitions in order to obtain the

33 JPC2007

proposed ciphering system. The purpose of our ciphering algorithm is to convert some plain text
P into a ciphered text C by means of an algorithm using key K. The main idea of such a scheme is
to associate different ciphering algorithms/cryptosystems to the states of an adaptive finite-state
transducer, so that its output is generated as part of the ciphered text in a specific state by
applying the algorithm associated to that state to the input data.

4.1. A Finite-State Transducer Approach
Let us consider a finite-state transducer T = (Q, Σ, Λ, δ, q0, F), where:

• Q: set of n states qs , 1≤ s ≤n (in the examples below, qs ≡ s by natural isomorphism);
• Σ: is the input alphabet and it contains all possible values for wi. Typically, Σ is the set of all

elements in {0,1}p, p > 0. In this case, p is the bit width of the symbols in the input alphabet;
• Λ: is the output alphabet, and it contains all possible output values. Note that Σ and Λ may

even be the same, but only |Λ| = |Σ| is required;
• q0: is the transducer’s initial state (q0 ∈ Q);
• F: is the set of the transducer’s final states (F may even be irrelevant, since typically T is not

always intended to operate as an acceptor);
• δ: Q×Σ → Q×Λ is the transduction function. Each of its defining transduction rules

(qs,wi)→(qj,λi) maps some input symbol wi ∈ Σ into its corresponding ciphered output λI =
Θs(wi, ks) ∈ Λ, where Θs and ks are the output parameters associated with the transition origin
state qs, and moves the transducer from its current state qs to state qj.

 (a) Transducer T1 (b) Transducer T2

Figure 1: Examples of Finite-state Transducers. Token X represents any input symbol

The computation performed on an input string w = w1…wn by the finite-state transducer T1 in

Figure 1(a) is (q0, w1...wn, ε) ├* (q0, ε, Θ0(w1,k0)... Θ0(wn,k0)). Its output is obtained by applying
function Θ0 to each wi (1 ≤ i ≤ n), with the argument k0. If Θ0 is a ciphering function and k0 is the
ciphering key, then T1 performs a ciphering computation on wi. A 4-state transducer T2 is
illustrated in Figure 1(b).

In order to decipher the output of T1 a finite-state transducer T1
-1 is needed, where: (i) Q, F, q0

are the same as in T1; (ii) The input alphabet of T1 is the output alphabet of T1
-1 and vice-versa;

and (iii) for each (qs, wi) → (qj, λi) in T1 there is some (qs, λi) → (qj, Θs
-1(λi, ks

-1)) in T1
-1, where

λi=Θs(wi, ks) in T1, ks
-1 is the deciphering key associated to the ciphering key ks and Θs

-1 is the
deciphering function for the Θs ciphering function.

The following conditions must hold in order to a finite-state transducer be considered a
ciphering system: (i) the ciphering finite-state transducer must be deterministic, otherwise it
would map an input text into different ciphered texts, turning the deciphering operation also non-
deterministic; (ii) finite-state transducers must be fully described, otherwise their operation would

JPC2007 34

stop before input text is fully processed; and (iii) the same function and the same key must apply
to all transitions emerging from each state (output parameters are associated to the transition’s
origin state), otherwise the inverse operation will not be deterministic.

4.2. Adaptive Transducer Approach
Adaptive functions allow automatically changing finite-state transducer’s behavior, by

modifying transducer’s topology and ciphering parameters (key, function, output mapping).
Adaptive functions used in our proposal must be designed in such a way that the transducer

remains both fully described and deterministic. That requires restrictions to be imposed to the
allowed adaptive actions, e.g., in order to assure that the transducer remains fully described, the
removal of each transition must be complemented by the adding another transition emerging from
the same state and consuming the same input symbol. Additionally, for efficiency, it is advisable
to restrict the use of adaptive actions only to before- or after- ones, not both.

Choosing adequate adaptive actions requires caution and study. An example of a convenient
set of simple adaptive functions is: (i) modify the destination state of a transition in order to
change transducer’s topology. The new destination state may be specified as a parameter for the
adaptive function; (ii) modify the adaptive action within a rule by changing the adaptive function
invoked by the rule; and (iii) modify the output symbol in some rule. Such a function must
consistently replace the output symbol of all rules departing from the affecting state, in order to
ensure that different destination states correspond to different outputs. The idea is to modify
ciphering parameters. The output symbol may be changed in two ways: (i) for pre-computed
values apply some adequate function (e.g. an exclusive-or operation between the original cipher
symbol and some parameter); and (ii) for the function/key method, change the function and/or the
key used.

4.3. Adaptive Finite-State Automata in Data Security

Preceding sections propose using (adaptive) finite-state transducers in data security. An
adaptive version was used to perform ciphering/deciphering. An adaptive finite-state transducers-
based ciphering system is an algorithm that uses an adaptive finite-state transducer instead of
traditional data keys. The strength of this approach is that it radically disguises the algorithm
being executed, and allows it even to change dynamically.

Using a finite-state transducer as a key allows performing symmetric stream ciphering
(similar to a stream cipher cryptosystem [Bishop, 2002][Tanenbaum, 2003]) in which part of the
operation sequence depends on information encoded within the key. The sequence of keys and/or
functions executed depends on the current state of the transducer. Each state determines the
function and the key to be used, so such execution path may be denoted by a sequence ((Θq0, kq0),
(Θq1, kq1), …, (Θqr, kqr)), where qr denotes the current state before the execution of the n-th step of
computation. Consequently, part of the transduction logic becomes hidden. For illustration
purposes, let us consider, for analogy, accepting sentences of a language defined by a regular
expression. This problem may be solved by using specific finite-state automata [Lewis and
Papadimitriou, 1981]. Algorithms that simulate generic finite-state automata are well-known, but
the particular one that accepts a specific language defined by some particular regular expression is
encoded in the corresponding transition function. The resulting obscurity in that logic meets the
requirements stated by Kerckhoff’s principle, provided that the adaptive transducer simulating

35 JPC2007

algorithm be publicly available. It remains hidden the information on what sort of operation is
expected to be used at each specific execution step.

However, conventional finite-state transducers may be inferred. Some ciphering key patterns
may appear, turning this approach vulnerable to differential attacks. An illustrating example is
given in Figure 1(b). Note that the sequence q0, q1, q2, q3 of states in this automaton corresponds
to an execution pattern. Such fragility may be avoided by dynamically modifying the transducer’s
execution flow. Such feature is the essence of adaptive devices. For example, even topology is not
permanent in adaptive finite-state automata.

Adaptive functions allow changing the set of transitions and the associated ciphering
parameters. Furthermore, with appropriate adaptive functions it is even possible to change the
adaptive actions associated to the transitions.

In brief, this approach has the following features:
• The ciphering key, represented by an adaptive finite-state transducer, holds information on the

sequence of computation. The performed ciphering/deciphering operation depends on such
sequence.

• The algorithm does not predefine the number of states, so the key size is not constant.
Nevertheless, execution time stays constant for each state, so the number of states in the
transducer will not affect its ciphering/deciphering speed. However, the larger the number of
states, the harder the inference of the correspond transducer (key).

• Transducers are self-modified by the adaptive functions associated to the execution of their
transitions.

• The ciphering/deciphering operation also depends on the input text, once different input
strings usually have different computation sequences.

• Pre-computed output in the execution algorithm allows attackers to know only the type of
adaptive actions used.

• Different instances of a given input block may be ciphered into different outputs. This is a
kind of stream cipher algorithm in which the next key depends on both the input text and the
topology of the automaton being used as a key.
Nevertheless, one may be aware that: (i) using a transducer as a key often leads to keys that

are large compared to the traditional 128- or 256-bit keys used in symmetrical cryptosystems; (ii)
execution time depends on the way output symbols are generated: by means of some pre-
calculated table or by using function calls. For pre-calculated output, transitions cannot be
partitioned, so the number of possible input/output must be limited, otherwise, the transducer
becomes too large; (iii) based on the logic of the algorithm and its intrinsic dependence on the
input text, both ciphering and deciphering transducers must stay synchronized in order to assure
correct operation. With this approach only two-sided communication is feasible; and (iv) With
these restrictions only it’s possible that two or more different keys execute the same logical
operation, i.e. perform the same cipher/decipher operation. In order to this ciphering scheme be
properly used as a cryptosystem, some further refinements must be developed to avoid this
situation.

Security provided by both hiding information and changing the execution flow allows using
straightforward actions, such as the exclusive-or operation, in the output function. We expect that
after some refinements, this ciphering scheme will become the basis for a new kind of stream
cryptosystem.

JPC2007 36

5. Experiment and Results: The Adapt_Cipher Algorithm

Adapt_Cipher is an illustrative ciphering algorithm (described in Algorithm 1), derived from

the obsolete Ceasar cipher (by using only that cipher as the Θ function), developed around the
previously presented ideas. The aim of this ciphering scheme is to exemplify the possibilities of
adaptivity for data security applications and to compare the proposed scheme with a well-known
classical cipher (the motivation of choosing Ceasar cipher is the ease of understanding). Our main
goal is to obtain a fast ciphering system. Although it seems to be susceptible to be broken, it can
be significantly hard to predict or infer if the number of states is sufficiently high (e.g. 50 states).

Algorithm 1 Adapt_Cipher

Require: The key (description of an adaptive finite-state transducer)
Execute:

initialize cipher();
qcurrent = 0;
input = readinput();
while (input != NULL) {

 qcurrent = executetransition(qcurrent, X); //performs a transducer transition
 output = Θqcurrent (input, Kqcurrent); //generates output symbol (ciphered text)

 executeadaptivefunction(qcurrent, X); //executes adaptive action
 input = readinput(); } //reads next input symbol
 end;

This ciphering algorithm accepts an adaptive finite-state transducer with one transition per
state (to reduce the key size, the single token X represents all possible input symbols used in the
transition). Each transition is associated to an adaptive function associated (indexed by numbers 0
through 4). Let |Q| be the number of states, and DS the destination state in the transition being
executed. The procedure call “executeadaptivefunction” assume one of the following options:

A0: Do nothing;
A1: Change DS to (DS+1) mod (|Q|);
A2: Change the Kqcurrent to (Kqcurrent + 1) mod 26;
A3: Change DS to (DS+1) mod (|Q|) and change the Kqcurrent to (Kqcurrent + 1) mod 26;
A4: Change DS to (DS+2) mod (|Q|).

The ciphering initialization is a function that reads in the key and converts it to an internal
representation. Its execution consists of a loop on the input text symbols (the algorithm keeps
running until input is exhausted). The loop body includes: reading the next symbol from the input
text, performing a transition to the next state of the transducer, generating an output, and
executing the required adaptive action.

5.1. Example

This example has been elaborated in order to illustrate some execution details of this method
and its differences to the classical Caesar’s approach, which is too weak for real uses, since it is

37 JPC2007

vulnerable to two simple attacks: exhaustive testing its 26 valid keys or using frequency analysis
over the idiom of the original text.

This example is based on the finite-state transducer in Figure 1(b). The finite-state approach
gives the pattern of key (1234). In order to avoid such patterns, adaptive functions have been
inserted. The resulting adaptive finite-state automaton is used as a key for the adaptive cipher
(described in Table 1). The reduced number of states in this example is not usual, and has been
used for easing manual simulation only. Obviously, effective use of this method in actual
applications requires a larger number of states to be used for the transducer.

Id Current
State

Input
String

Destination
State Output String (Kstate)

Adaptive
Function

1 0 X 1 X+1 mod 26 (K0 = 1) A1
2 1 X 2 X+2 mod 26 (K1 = 2) A2
3 2 X 3 X+3 mod 26 (K2 = 3) A0
4 3 X 0 X+4 mod 26 (K3 = 4) A5

Table 1: Adaptive Finite-state Automaton Transitions (visual key for Adapt Cipher)

A step-by-step evolution of the adaptive finite-state transducer on the word “REDISCOVER” is:
 (M0, REDISCOVER, ε) ├1 (M1, EDISCOVER, S) ├2 (M2, DISCOVER, SG)
├3 (M3, ISCOVER, SGG) ├4 (M4, SCOVER, SGGM) ├1 (M5, COVER, SGGMT)
├3 (M6, OVER, SGGMTF) ├4 (M7, VER, SGGMTFS) ├3 (M8, VE, SGGMTFSY)
├4 (M9, R, SGGMTFSYI) ├1 (M10, ε, SGGMTFSYIS)
The subscript at each computation step indicates the number of the transition applied.

For comparing results, “REDISCOVER” is now ciphered using the Caesar cipher and the
finite-state automaton (without adaptive actions). Table 2 compares the results.

Input R E D I S C O V E R

Caesar cipher
Keys 3 3 3 3 3 3 3 3 3 3
Output U H G L V F R Y H U

Finite-state Automaton in Fig 1 (b)
Keys 1 2 3 4 1 2 3 4 1 2
Output S G G M T E R Z F T

Adaptive Finite-state Automaton (table 1) – Adapt_Cipher
Keys 1 2 3 4 1 3 4 3 4 1
Output S G G M T F S Y I S

Table 2: Compared results. “Keys” indicate the Caesar cipher key used for each letter.

Although using so few states is not recommended, one can easily observe how even a simple
4-state adaptive finite-state automaton provides an apparently erratic effect in the sequence of
“keys”. Changing “keys” turns this approach less vulnerable to the previously mentioned attacks
to Caesar cipher. Since the transducer changes dynamically, inference becomes a harder task.

6. Discussion about the results: Overview of Strength against Attacks

JPC2007 38

The security achieved through this method is fundamentally based on hiding information on

the ciphering/deciphering process. In addition, adaptivity modifies the transducer every time an
adaptive action takes place, so breaking such system seems to be a hard task. The following text
comments on possible attacks and their consequences. The security of this algorithm has not been
analytically proven yet. Stream cipher cryptosystems are often general design/analysis techniques.
Estimating or assuring security for this kind of cipher is more complex than for the block cipher
cryptosystem [Schneier, 2000], since the block cipher cryptosystem typically follows some
concrete design practice that assures security.

A first possible attack is to build a translation dictionary that maps input text into the
corresponding cipher. Using the transducer method, each plain text maps into different ciphered
texts, therefore any attack using translation dictionaries results rather ineffective.

Another possibility is the differential attack. It investigates how variations in the input text
reflect in the output text and explores high-probabilities in the occurrence of such differences
[Heys, 2001]. Since ciphering functions and keys may change from state to state, since the state
path depends on the input text and since adaptive functions may change transducer’s parameters,
the possibility of simultaneously occurring matching cipher differences in correspondence to
identical input text differences seems to be very low. Additionally, it is possible to use cipher
functions already proven to be secure against this kind of attack.

Perhaps the best way to break this ciphering scheme should be to determine its correct key.
For doing that one needs to discover the number of states, the set of state transitions and the
adaptive functions and corresponding arguments attached to each transition. Finding such amount
of information through brute force is unfeasible, once there exist too many keys (theoretically,
infinite keys exist since the number of states is unknown and not limited). A more sophisticated
technique can combine key inference and differential attack. Our illustrating example (adaptive
ciphering with a 4-state key) is rather easy to break by using a sufficiently large number of input
texts together with the respective ciphered texts, and assuming that only Ceasar cipher has been
used. However, by increasing the number of states, key inference tends to become unfeasible.
Certainly more sophisticated attacks will appear with the diffusion of this approach.

Public knowledge of the algorithm provides information that helps finding ways to determine
the key but this information alone seems to be insufficient to endanger the key’s confidentiality:
(i) the key is encoded as an adaptive finite-state transducer; and (ii) the possible adaptive
functions to be executed and output functions (for non-pre-computed output) are given.

7. Conclusions

This work presented some essays toward a novel ciphering method. In our proposal, security

is obtained for a ciphering system, either: by masking part of the algorithm’s logic; by moving
some information into the key; by performing adaptive execution.

The security obtained with both transducers and adaptivity allows using simple arithmetic
ciphering operations, or even pre-computed values, reducing the ciphering process to simple
replacements of input text blocks with corresponding ciphered text blocks obtained by performing
the related transduction.

By reducing the complexity of such operations, the ciphering process may turn faster than

39 JPC2007

with traditional cryptosystem algorithms. In this case, execution time depends on three
components: (i) the time needed to perform a state transition; (ii) the time needed to obtain an
output value; and (iii) the time needed to perform the changes specified by adaptive actions. With
fast output algorithms it is possible to achieve good performance in applications that require the
encryption of large amounts of data (e.g. ciphering digital video).

As a practical result of this research we expect to apply these ideas in near future to the design
of a secure and efficient cryptosystem, with a unique key (the approach developed so far does not
guarantee that two different keys do not generate the same output).

References

[Bishop, 2002] Bishop, M. (2002). Computer security art and science. 1st edition. Addison-

Wesley Professional.
[Daemen and Rijmen, 1999] Daemen, J. and Rijmen, V. (1999). AES proposal: Rijndael.

http://csrc.nist.gov/Crypto Toolkit/aes/rijndeal/
[Heys, 2001] Heys, H. H. (2001). A tutorial on linear and differential cryptanalysis. Centre for

Applied Cryptographic Research, Departament of Combinatorics and Optimization,
University of Waterloo.

[Lewis and Papadimitriou, 1981] Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the
theory of computation. Prentice-Hall, Inc.

[Neto, 1987] Neto, J. J. (1987). Introdução à compilação. LTC - Livros Técnicos e Científicos
Editoras S.A.

[Neto and Pariente, 2002] Neto, J. J. and Pariente, C. A. B. (2002). Adaptive automata - a
revisited proposal. Implementation and Application of Automata 7th International
Conference - CIAA 2002. Tours, France.

[Pedrazzi; Tchemra and Rocha, 2005] Pedrazzi, T.; Tchemra, A. H. and Rocha, R. L. A. (2005).
Adaptive decision tables - a case study of their application to decision-taking problems.
Proceedings of International Conference on Adaptive and Natural Computing Algorithms -
ICANNGA 2005. Coimbra, Portugal.

[Pistori, 2003] Pistori, H. (2003). Tecnologia adaptativa em engenharia de computação: Estado da
arte e aplicações. Universidade de São Paulo (USP), São Paulo.

[Pistori; Neto and Pereira, 2006] Pistori, H.; Neto, J. J. and Pereira, M. C. (2006). Adaptive non-
deterministic decision trees: General formulation and case study. INFOCOMP Journal of
Computer Science. Lavras, Brasil.

[Rivest; Shamir and Adleman, 1978] Rivest, R. L.; Shamir, A. and Adleman, L. (1978). A
method for obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(1):120-126.

[Rocha and Neto, 2000] Rocha, R. L. A. and Neto, J. J. (2000). Autômato adaptativo, limites e
complexidade em comparação com máquina de turing. Second Congress of Logic Applied to
Technology - LAPTEC'2000. São Paulo, Brasil.

[Schneier, 2000] Schneier, B. (2000). A self-study course in block-cipher cryptanalysis.
Cryptologia, 24(1): 18-33.

[Tanenbaum, 2003] Tanenbaum, A. S. (2003). Computer networks. 4th edition. Pearson
Education, Inc. Prentice Hall PTR.

JPC2007 40

