
3º Workshop de Tecnologia Adaptativa – WTA’2009 62

Abstract — An Enterprise Service Bus, ESB, is an essential
part of a Service-Oriented Architecture, SOA. Among other
attributions, an ESB needs to manage service ranking and
selection during the application running time. This is a
highly complex computational problem. This paper presents
a solution for this problem based on adaptive decision tables.
One of the main features of the presented solution is to allow
the integration of many other algorithms as adaptive
functions. This is desirable because many algorithms were
already proposed but with different requirements, so it is
necessary to propose a solution able to integrate different
contexts. Besides, a general solution must be able to support
the integration requirements that are necessary to ESB and
SOA. In order to illustrate the viability and relevance of the
proposal, examples are also presented, along as the future
researches that may be developed considering this work as a
starting point.

Keywords — Adaptive systems, Adaptive decision tables,
Enterprise service bus, Service-oriented architecture,
Adaptive algorithms.

I. NOMENCLATURE
BPEL – Business Process Execution Language
CORBA – Common Object Requesting Broker

Architecture
DCOM – Distributed Component Object Model
ERP – Enterprise Resourcing Planning
ESB – Enterprise Service Bus
FTP – File Transfer Protocol
HTTP – HyperText Transfer Protocol
IT – Information Technology
JBI – Java Business Integration
JDBC – Java DataBase Connectivity
JEE – Java platform, Enterprise Edition
POP3 – Post Office Protocol version 3
QoS – Quality of Service
RMI – Remote Method Invocation
SMTP – Simple Mail Transfer Protocol
SOA – Service Oriented Architecture
SOAP – Simple Object Access Protocol
SOC – Service Oriented Computing
UDDI – Universal Description, Discovery and

Integration
WSDL – Web Services Description Language

WS-* – Family of W3C standards
XML – Extensible Markup Language
XMPP – Extensible Messaging and Presence Protocol

II. INTRODUCTION
SYSTEM architecture may be defined as the
fundamental organization of the components of a
system and their relationships, among themselves

and with the external environment [1]. Usually, basic
principles, named as architectural patterns, conduct the
architectural design, development and system evolution
over time [5]. Architectural patterns are a main concern to
IT professionals, which everyday must face the challenge
to improve and maximize the usage of available resources
while are steady pressured for reducing development and
maintenance costs, in addition to improve the quality
skills of each solution. Among the main and most
expensive resources are the software programs which
have already been developed.

Fig. 1 presents the architectural evolution over time,
from Monolithic based to Services based solutions, as
discussed in ENDREI et al. [5]. Monolithic is considered
the simplest pattern while Services is considered the most
sophisticated one. Monolithic applications are self-
contained, single-tiered and contain the main program, the
user interface and the data access code. In order to attend
main concerns of IT professionals, such as reuse and
maintenance, monolithic applications are usually not
recommended. For instance, if a problem is found, the
whole application must be revised, not only the damage
part. In this sense, architectural patterns presented in Fig.
1 show evolutions to software engineering by adding
layers and establishing communication among them.
Distributed systems are required for the last three.

The alternatives presented in Fig. 1 usually are seen as
evolutions in architectural paradigms. This is due to each
solution claims to be better than previous considering the
following criteria [5]: 1) Management of corporative
systems; 2) Improvements in system scalability; 3) Cost
reduction; 4) Collaboration and reuse of solution; and 5)
Integration and interoperable skills. However,
requirements of each software packages direct the
architectural pattern choice.

Application of Adaptive Decision Tables to
Enterprise Service Bus Service Selection

Fabiana S. Santana (fabiana.santana@usp.br)*#, Claudio Barberato (cbarberato@fei.edu.br)#, Renata L. Stange
(rlstange@usp.br)*, João J. Neto (joao.jose@poli.usp.br)*, Antonio M. Saraiva (amsaraiv@usp.br)*

* Departamento de Computação e Sistemas Digitais – Escola Politécnica da Universidade de São Paulo – São Paulo – Brazil

Departamento de Ciência da Computação – Centro Universitário da FEI – São Paulo – Brazil

A

3º Workshop de Tecnologia Adaptativa – WTA’2009 63

Fig1. Architectural evolution over time.

SOC is a new paradigm to develop software using
services as basic units. It has evolved from component-
based software frameworks, such as JEE
[http://java.sun.com/javaee/], CORBA
[http://www.corba.org/], .NET
[http://www.microsoft.com/NET/] and DCOM
[http://msdn.microsoft.com/en-
us/library/ms809340.aspx]. IBM [http://www.ibm.com/],
Microsoft [http://www.microsoft.com/], SUN
[http://www.sun.com/], Hewlett-Packard
[http://www.hp.com/], Oracle [http://www.oracle.com/],
SAP [http://www.sap.com/] and other major companies in
this area consider Web services as an adequate approach
to SOC adoption [9].

Open Internet protocols XML and HTTP are the basis
for Web services standards (e.g.: SOAP, WSDL, UDDI,
and BPEL), which makes SOC adoption cheaper and
easier [20] [9]. Services may be offered by applying many
different technologies, but nowadays Web services are
probably the most adopted one [13]. As main ideas
presented in this work do not depend on any specific
service technology and are applied to Web services as
well as are applied to many other service technologies,
this work will not discuss all of them in details unless
strictly necessary, focusing on only this one to discuss the
concepts presented, whenever it were necessary.

SOC, Service Oriented Computing, enables the
execution of transactions across multiple platforms,
providing advanced software interoperability. The
construction of a system in SOC demands the integration

of services in providers distributed worldwide. Thus,
each application may be designed based on a business
process, representing the steps to solve the computational
problem. A business process may integrate, during its
execution, different IT systems, available in different
service providers. Process’ steps may be provided by
internal or external (outsourcing) service providers. Cost
and performance are among the main reasons to define
how a service will be provided. Once these definitions are
made, one of the main challenges in SOC is related to
service creation, composition and selection, over the
Internet, especially in the case of outsourcing [9], where
the conditions are not under the control of applications
owners.

SOA is the architectural paradigm related to SOC.
Applications which present requirements such as
collaboration and reuse of interoperable solutions, high
integration needs (e.g.: ERP systems), interoperability
skills (e.g.: distributed systems) or reusable components,
usually should consider SOA as architectural pattern and
SOC as the correspondent development paradigm [11].
This is the case of many problems which concerns to IT
professionals.

Initial investments for SOA adoption usually require a
financial and computational effort which may be
considerable, but, after that, the development cost of each
application tends to be reduced over time, as reuse may be
applied in large scale. It is also possible to implement
SOA for reusing legacy systems. This strongly reduces
software programming efforts [5] [11]. However, as
wisely said by BROOKS [3], there are “no silver bullets”
when the subject is software development and
maintenance, and SOA-based systems also have their
intrinsic problems, which may not be disregarded.

Most common problems are related to QoS, Quality of
Service. QoS represents a wide range of issues that must
be treated in order to offer a good solution to the final
user. QoS issues in service technologies must consider
many different properties [10] [13]. For instance, related
to Web services, it is possible to enumerate: 1)
Availability: time that a service keep operating, in
percentage values; 2) Security: include authentication
mechanisms to offer and use services, data integrity and
reliability, and data confidentiality, among others; 3)
Response time: time taken by a service to respond to
requests which have been done; and 4) Throughput:
related to the rate a service can process requests, usually
as a function of time.

In addition to QoS, others issues must be considered.
For instance, consider the case of non-deterministic
applications, such as ecological niche modelling [19].
They are typical cases where the correctness of the results
is usually more relevant than the response time,
nevertheless the response time must be considered
anyway. However, to describe each issue related to
service selection is out of the bounds of this work and,

3º Workshop de Tecnologia Adaptativa – WTA’2009 64
whenever necessary.

In an architectural perspective able to disregard the
complex details of dealing with services technology, the
implementation of a SOC application may be reduced
mainly to choose and integrate services. This represents a
simple alternative to implement applications in a very fast
and simple way, as desired by many IT professionals. But
there are problems intrinsic to the services nature which
must be addressed. For instance, when a service is
requested, it may present some problems related to QoS,
such as availability; it is usually an unpredictable
problem.

The service orchestration concept allows the design and
implementation of software solutions by detailing the
requirements (e.g.: interface, inputs, outputs) of the
services necessary to the application [9]. If this was
performed without to tie each service to specific
providers, actions may be taken to prevent and correct
application problems due to problems in the services,
such as to replace a problematic service by other, in
running time. Therefore, a main challenge of SOA-based
solutions is service ranking and selection, so as to develop
applications able to choose and replace services in
running time.

In order to provide an adequate services’ management,
SOA-based systems use ESBs [9]. Nevertheless, a very
much relevant aspect of an ESB is the service ranking and
selection itself [4]. This might not be a concern of some
researchers yet because services technologies are still
incipient in many companies, but certainly will became a
problem when many service providers start to compete
with each other. When that happens, the main question
will be: “How to select a service, if many different
providers furnish analogous solutions?”. Service selection
may be provided by ranking the available services
according to specific criteria and applying some selection
technique among the many computational techniques.

Adaptive techniques [7] [16] may enable the
construction of algorithms and a framework for service
ranking and selection. They can be applied to choose the
best or a subset of good services among a service list.
This list may be indexed and re-indexed according to the
service behaviour, considering results of their previous
executions. At this point, it is important to note that QoS
and other service attributes may not remain fixed over
time, and a good service today may loose its quality
tomorrow, so the re-indexation, or re-ranking, is a
demanding task. Considering this specific aspect of the
problem, adaptive technologies seem to be the most
appropriate solution. Among many adaptive techniques,
adaptive decision tables seem to be more adequate, since
its structure is related to UDDIs, which store services
information.

This work proposes a solution to construct ESBs using
adaptive decision tables, which will be able to manage

changes in services issues based on QoS and,
considering these changes, to re-ranking the services by
changing ranking and selection rules over time. Other
services constraints also are considered. The paper starts
by presenting some IT backgrounds, where SOA, ESB
and adaptive decision tables are discussed. Then, the
proposal of adaptive decision table for service ranking
and selection is presented. After that, the architectural
solution is presented, showing where adaptive decision
tables would be included, this time in an architectural
context. For the sake of comprehension, this will be
explained using a factual system reference architecture.
Examples to illustrate the application of the overall
proposal of adaptive decision tables for service selection
are also presented, and discussion and future works lead
to the conclusion of this work.

III. IT BACKGROUND

A. Service-oriented architectures

A reference model [5] is a standard to decompose a
system in parts, which must be combined to
collaboratively solve the original problem. An
architectural pattern describes the elements of a software
architecture, the relationships among them and the
restrictions to specify the fundamental structure of an
application so as to obtain a complete architectural
solution. A software architecture (or concrete
architecture) presents the structure and organization
furnished by the system, subsystems and components, and
the interactions among them, in order to build systems
able to fulfil identified and analyzed properties [5].

SOA is a paradigm to organize distributed
competences, controlled by different providers or not [5],
where reuse may be more possible than imagined before.
Competences, in the system development context, are
usually developed to solve problems when they appear.
However, in a distributed scenario, a part may have needs
compatible with competences already developed by
others. Since the competences may already be available,
SOA proposes services as the technology to provide that,
and the required details to use them are known, a part
may use the competences furnished by the other [5]. So, it
is possible to define a service as the competence to
execute jobs for others.

More specifically, SOA assumes that applications
provide functionalities as reusable services [14]. A
service is a self-contained component which may be
accessible through a standardized and pre-defined
interface. Any application may implement and offer
services which may be used by other applications.
Therefore, it is possible to implement complex business
process by combining services from different sources,
which is named as service orchestration.

To offer a service, a service provider must register it
on an UDDI (or equivalent), which is a central naming

3º Workshop de Tecnologia Adaptativa – WTA’2009 65
service. Then, when a service was requested, consumer
applications have sources to look for available services,
retrieve information about connection to the respective
service providers, and get service description necessary to
define the usage skills of a service. Any service-based
technology (e.g.: Web services, SOAP) may be used to
implement SOA.

A SOA-conformity solution must [5]: have entities
identified as services, according to the reference model
definitions; define how visibility is established among
services consumers and providers; identify how to
mediate interaction; be able to understand how effects of
services will be understand; associate description with
services; be able to identify the execution context required
to support interaction; and identify policies and contracts.

B. Enterprise service bus

The construction of applications based on service
orchestration is possible in a distributed scenario even
when the service providers do not use the same operating
system, programming languages or data models. This
flexibility is fundamental for integration, since it enables
the link among very different systems and environments.

Therefore, a powerful solution to integrate services
based on open standards and able to support SOA is
required, and this solution is usually named as Enterprise
Service Bus [14]. Thus, an ESB needs to deal with open
standards and infrastructures to integrated distributed
systems, which requires: 1) Service routing; 2) Service
invocation and mediation; 3) Abilities to integrate
distributed applications and services with reliability; and
4) Security skills.

ESBs main components are routers, transformers,
adapters and bridges, so as to integrate and interoperate
applications over different middlewares (software to
connect other software components), providing
communication skills. [14].

In terms of resources, an ESB should offer support to
SOAP, WSDL – Web Services Description Language,
UDDI – Universal Description, Discovery and
Integration, and WS-*, the family of W3C standards. In
addition, communication mechanisms as JBI, RMI,
JDBC, SMTP, POP3, FTP or XMPP are also required.
For message routing and transportation of sources
decoupled from the destinations (allowing a sender to
send messages without specifying exact destinations),
transformations or translations resources (e.g.: transport
protocol, message format and content) are demanding, as
much as the usage of a common data format (XSL, for
instance, is a powerful tool to use XML messages).
Besides, adapters are recommended to connect APIs and
data structures, in addition to facilities to administrate the
infrastructure, among others identified requirements.

The proposal in this work is that ESBs become able to

provide the facilities to accomplish all these tasks, and
the solution proposed in this work should be aggregated
to ESBs implementation.

C. Adaptive Decision Tables

A conventional decision table [17] is a device
composed of conditions rows and actions rows, where the
columns represent rules associated to conditions and
actions. The basic decision table operation is: the
conditions defined by the rules are verified and, if one of
them is satisfied, this rule is considered as a valid one and
all action associated to that rule are performed. Table 1
illustrates the concept by presenting a conventional
decision table where c1, c2, …, cn are the conditions rows,

and a1, a2, …, am are the actions rows.

Adaptive decision tables [6] [8] are adaptive devices
which may be obtained by extending conventional (non-
adaptive) decision tables, by adding rows to encode the
adaptive actions to be performed. These actions must be
able to alter the rules defined in the original decision
table, so as to change the behaviour of respective
conventional decision table. Adaptive rules are usually
checked before and/or after conventional rules. By
modifying the rules defined in the original decision table,
it may be possible to remove rules, to add rules and to
change the behaviour of an established rule [15].

Table 2, adapted from NETO [15] and BRAVO ET
AL. [2], presents an adaptive decision table with adaptive
function rows, ba1, ba2, …, baf. c1, c2, …, cn are the
conditions rows and a1, a2, …, am are the actions rows, as
in the conventional decision table, but they may be
changed according to adaptive functions rows.

IV. ADAPTIVE DECISION TABLE FOR SERVICE RANKING

AND SELECTION
A conventional decision table to service ranking and

selection may be constructed simply by using the
following: 1) A defined number of lines to describe the
conditions; 2) A defined number of lines to describe the
actions; and 3) Each service will be describe in a column.
1) and 2) are from the original definition, and 3)

Table 1 – A conventional decision table.

3º Workshop de Tecnologia Adaptativa – WTA’2009 66
introduces the services in the decision table.

The condition rows c1, c2, …, cn, are the n conditions
described by QoS of Web services, each attribute
represented by a ci, 1 ≤ i ≤ n. Besides availability,
security, response time and throughput, the ci, 1 ≤ i ≤ n,
conditions also may include other functional and non-
functional conditions, such as: 1) Correctness of the
answer; 2) Overload of a service in a specific moment;
and 3) User preference (when user interaction is
available).

The list of criteria may be changed according to the
application, then it is desirable that an Adaptive ESB have
mechanisms to configure (and adapt) also this list.

There are real conditions which are related to a
numerical interval (e.g.: 0 ≤ response time ≤
MAX_TIME, where MAX_TIME is a constant value). In
these cases, in fact, the condition may be split in two
related conditions ci, 1 ≤ i ≤ n, presenting the minimum
and maximum values for each service attribute, so as to
offer numeric values to allow the decision table
implementation (e.g.: c1: 0 ≤ response time and c2:
response time ≤ MAX_TIME). The format itself is not
that relevant, but the aim of defining a numerical interval
must be achieved. Table 3 presents the structure, similar
to the structure presented in Adaptive Decision Tables
defined to ADAPTGARP algorithm [2]. Each condition
ci, 1 ≤ i ≤ n, is split into two other conditions: ciA and ciB,
1 ≤ i ≤ n, respectively for the lower and upper bounds of
the interval, i.e., ciA means vi ≥ i11 and ciA means vi ≤ i12,
where vi is the variable which is being analyzed (e.g.:
response time), and [i11, i12] is the acceptable interval
(e.g.: [0,10] seconds for response time). The same feature
also might be provided by adding extra columns instead
of lines. If the interval was not necessary (e.g.: service
availability), the previous condition definition may be
applied.

Defined the structure of the adaptive decision table, the
practical question related to service attributes/issues is:
“how to evaluate each of them in order to be represented

by numerical values?” The answer is not unique and is
not simple, since each attribute must be studied
separately. Common QoS attributes will probably have
values defined by companies or systems, related to what
may or may not be accepted, but other attributes may be
more difficult to evaluate. Consider, for instance, the
correctness of an answer of a non-deterministic
experiment, implemented as a Web service. This is highly
dependant of the problem. However, even in this case,
some metrics must be adopted by the research community
involved with the specific problem, since it is supposed
that every model must be evaluated. So, correctness must
be studied in the respective community, and the
acceptable interval (or decision, in case of Boolean
experiments) for this issue may be defined to be inserted
in the decision table. Ecological niche modelling, for
instance, includes a statistical evaluation of each
generated model [19], and there are studies about these
statistics. The results of both may drive the interval
definition. Other criteria, such as user evaluations, may be
more simplistic to define, since it is just necessary to ask
the user to attribute a number in the range of a to b, and,
then, assume [a,b] as the valid interval (e.g.: marks from 1
to 10). Nevertheless, the main point is that, since a value
or an interval was defined, the adaptive decision table for
service ranking and selection is ready to be used.

It is necessary to define, then, how to use the adaptive
decision table. Since a condition ci, 1 ≤ i ≤ n (eventually
defined by ciA and ciB, 1 ≤ i ≤ n), is satisfied, a respective
action aj, 1 ≤ j ≤ m, may be associated to that. In this case,
as the aim is to ranking and select services, a score may
be associated with each number belonging to the
numerical interval associated to the condition ci, 1 ≤ i ≤ n
(ciA and ciB, 1 ≤ i ≤ n). The score may be a number or a
function, depending on the complexity of the criteria.

A scoring algorithm must be defined by the usage of an
extra structure to store services information, which would
be integrated to the adaptive decision table to include the
results obtained after execution of each action ai, 1 ≤ i ≤

n. Several proposals were also presented for achieving

Table 2 – An adaptive decision table.

3º Workshop de Tecnologia Adaptativa – WTA’2009 67
that and each situation must consider which of them is
more adequate, if there are any. To analyze and discuss all
presented proposals for service ranking is out of the
bounds of this work but it is a job to be done. If any of the
proposals fit, the problems must be a new proposal must
be discussed.

Only in the moment when a service was invocated, all
services in the table able to match the requirements of that
service must be evaluated and their score must be
evaluated. After calculating the scores of the fitting
services, ranking and selection are simple tasks, which
can be reduced, in algorithm theory, to a vector sorting
problem. So, the solution described so far, based on
conventional decision tables only, would be enough to
solve the problem if the attributes of the services would
be fixed and reliable, over time.

However, to assume this fact as an absolute true is not
possible. There are several issues involved in service
technologies which may lead to a wide set of problems
[12]. For instance, service providers may present internal
errors and they may affect the quality of all services
furnished by them, communication problems may occur
by many different internal and external factors, a service
provider (and thus the required service) may be
overloaded, among many others regular problems that
Internet heavy users are familiar to deal from time to
time.

So, as time goes by, adaptive mechanisms must be
considered (and included in the adaptive part of the

decision table) to manage adaptive decision table lines,

including, removing or altering the lines according to
adaptive functions described in ba1, ba2, …, baf lines. It is
necessary to evaluate the values of each interval attributed
to each ci, 1 ≤ i ≤ n (eventually defined by ciA and ciB, 1 ≤

i ≤ n) condition, and the actions rules defined to each aj, 1

≤ j ≤ m, in order to including, removing and changing
their relevance according to system evolutions. This will
permit to change the scoring behaviour so as to perform
services ranking and selection.

There are general criteria, once a list of ci, 1 ≤ i ≤ n
(eventually defined by ciA and ciB, 1 ≤ i ≤ n) conditions
were defined. For instance, the columns related to the
available services should be dynamically increased.
Suppose availability quality attribute of service; it may
receive an initial value, which may be improved or
reduced by the adaptive functions each time a service was
invoked.

Main problems, again, rely on the adaptive lines which
are directly related to each problem, since different
problems have different behaviours, and therefore the
changes in their behaviours also are dependant of the
scope of the system studied. For instance, an Internet
Banking must have a response time upper bounded by 15
or 20 seconds, while a modelling system that executes
very complicated algorithms may take from hours to days
to reach a solution, so a response time of a week would be
easily acceptable. Other example, it may be difficult to
decide if a faster service is better than a more precise one
(e.g.: routing services), or if a faster service is more often

available than other [12].

Table 3 – An adaptive decision table with intervals.

3º Workshop de Tecnologia Adaptativa – WTA’2009 68
Even though, related problems are a matter of adaptive

decision table intervals adjustment and user decisions,
and for each problem domain all the criteria may be
studied and defined. In any way, this does not reduce the
solution credit, since its application still remain valid after
an initial configuration. Therefore, the proposal provides
a framework to re-evaluate services criteria using
adaptive techniques, as desired.

V. ARCHITECTURAL SOLUTION – HOW TO INTEGRATE

ADAPTIVE DECISION TABLES IN THE ESB CONTEXT
As an ESB requires dealing with many different issues

and the application of each adaptive decision table may be
dependant of the domain of each application, a single and
fixed adaptive decision table will hardly be the solution
for all ranking and selection service problems for SOA
application, specially considering a more general
architectural context, such as a Web portal. Therefore, the
construction of an ESB able to incorporate more than one
adaptive decision table is the main challenge of the
architectural solution.

From the architectural viewpoint, it must be designed
an environment to control this feature in an adequate way,
since a company may have a single ESB to integrate
many different applications, from many different domains
(e.g.: financial companies).

Consider that to implement the adaptive proposal
previously presented in this work, any domain must have
its respective adaptive decision tables, configured and
adequate to the specific conditions of each problem to be
solved. In the financial company, for instance, there are
systems to both human resource control and financial
investments.

At first sight, the implementation of so many adaptive
decision tables may seem a huge challenge and a very
difficult task, but it is important to remind this is the SOA
world, so it only will be necessary to create a service able
to generate generic adaptive decision tables integrated to
the ESB, able to configure such tables according to each
domain. So, the implementation of adaptive decision
tables is not an architectural problem by itself (more
difficult than to implement that will be to define and
configure the criteria, but this problem in not related to
the system architecture).

The real architectural problem, which requires an
architectural study in order to be solved, is how to
incorporate a Solution Manager to existing ESBs patterns,
in order to enable the adequate usage of adaptive decision
tables. This Solution Manager must be able to associate
each application to the right table without much effort, so
as to avoid performance reduction. In addition, the
Solution Manager must be able to treat different sources
of services, with different patterns.

However, despite of the challenge to make the Solution
Manager real in the ESB pattern, since this component

were defined, the selection service and ranking
problem will be solved, and many different approaches to
solve the selection problem itself will may be integrated
to an ESB, improving its skills to perform dynamic
service ranking and selection in an intelligent and
adaptive environment. Therefore, the effort to solve such
a problem is more than valid. In this work, an example of
a reference architecture including an service bus will
serve as the basis to present the proposal.

In SANTANA ET AL. [18], a reference architecture
for ecological niche modelling were proposed [19]. This
example was chosen because of its complexity and
because its architecture, among others features, details the
main characteristics of any ESB, marked in the figure by
the lightgrey color, avoiding to tie the solution to any
specific platform, such as Java.net OpenESB
[https://open-esb.dev.java.net/]. Therefore, it is effective
to take a closer look to this architecture, focusing mainly
on the ESB features.

At first, however, it is interesting to provide a briefly
explanation about ecological niche modelling systems, so
as to make the example understandable. Ecological niche
[19] is an important concept used as a foundation for
determining geographic species (e.g: plants and animals)
distribution. It is related to the conditions that allow a
species survival, disregarding external factors, such as
human influence, biotic interactions and geographic
barriers, which might prevent from a species to grow
within the ecological niche area. The main hypothesis is
that if a species can be found in certain conditions, then it
should be able to survive and reproduce in any place with
the same conditions. The modelling technique based on
this concept aims to obtain areas similar to those where
the species is known to occur, resulting in an ecological
niche model.

Many different computational algorithms may be
applied to obtain a niche model (including adaptive
algorithms [2]). These algorithms mainly consider species
occurrence and absence data, represented as coordinates
of points in the geo-referrenced space of the study area,
and data about the environmental conditions that are
relevant to the species survival at those same points.
Therefore, a model may be obtained in many different
forms, and by using services spread worldwide.

Modelling algorithms produce models to represents the
probability of finding species under the time–space
conditions described by the input data. The model may be
projected onto a map of the study region or is applied to
obtain projections onto different regions or periods in
time (past, present, and future), enabling the studies of the
research community in ecological and environmental
areas.

Fig. 2 presents the results of six experiments applying
ecological niche modelling technique for mapping
Ouratea spectabilis, a tree that can be found in Open
Cerrado, Cerrado sensu stricto and Cerradão, a vegetation

3º Workshop de Tecnologia Adaptativa – WTA’2009 69
of the Brazilian Savannah. Models are projected onto a
map of the State of São Paulo, Brazil, and are related to
2006. Algorithms applied are: 1) Minimum distance; 2)
Climate space model; 3) Bioclim; 4) Garp best subsets; 5)
Distance to average; and 6) Environmental distance. Blue
points are the original species occurrence points and the
color scale represents the probability to find the species,
where black means the probability is equal to zero. This
figure was extracted from [19] so as to illustrate the
problem to be solved by the presented architecture.

This technique has already been successfully used to

propose scenarios for sustainable use of the environment,
to evaluate the potential of invasive species, to evaluate
climatic changes impacts on biodiversity, to delineate
potential routes of infections and diseases and to indicate
potential priority areas for conservation, among others.

Ecological niche model generation is a complex
computational process, involving a variety of data,
techniques and software packages. It is data-intensive,
since environmental variables may be stored in very large
data files, of the order of many gigabytes. Data sources
are frequently distributed and accessed via Internet, which
may require adequate connectivity and bandwidth. Data
quality and format are other relevant issues, demanding
data pre-processing, cleaning and formatting, so as to
provide adequate input data for software packages. A
wide variety of methods and spatiotemporal data-analyses
can be applied, and specific data conversion may be
required to run the same experiment and to compare
results obtained by different algorithms. The connection
with all the sort of components presented in Fig. 3 may be
required.

The reference architecture, presented in Fig. 3 [18],
considers mainly the service-oriented architectural style.
Service Bus (the equivalent to an ESB within this
architectural proposal) receives the requests from
applications and calls the appropriate services; after a
service processing is finished, answers are stored in the
results Repository and the client is notified, receiving a
reference to retrieve desired results from the Repository
(this may be put available in the Web portal or to be sent
to the client, for instance, by e-mail, sms or other
communication technology).

Clients may access the applications using the portal so
as to offer easy and standard interfaces to the users.
Applications must interact with the Service Bus, which
invokes necessary services, even if they were distributed
over different service providers, using some specific
service protocol, such as Web services. The Service Bus
must guarantee the requests delivery and, when necessary,
must transform the data before communicating with the
services. The Repository must store results that require
huge processing effort and thus are invoked in an
asynchronous way. Other services usually are Web
services hosted in application servers on the Internet.

In order to increase the reusability and modifiability of
the system, because each layer just knows the
neighbouring ones, the architecture is organized into
layers. Layers are: client – access devices, e.g. web

browsers, wap-phones or pagers, for user input data for
processing and receiving answers; presentation – offers
services using a web portal, creating a single entry point
for the system; integration – integrates applications with
services, required for a complete business process,
including a service bus, for routing and conversion
services, and a repository, that offers mechanisms for
temporary storing results; business – services required for
the complete execution of a business process, including
services based on OGC, Web Feature Service (WFS) and
Web Map Service (WMS) (OGC, 2006); resources – data
base applications, legacy systems and other devices
required for precision agriculture.

Observe that this solution [18] already predicted the
inclusion of a Service Engine, even before the adaptive
technique was considered. In this proposal, the Service
Engine has the attribution to search UDDIs so as to find
services based in their description (usually, using BPEL
or related W3C patterns).

However, to solve the architectural problem presented
in this paper, the Service Engine must be extended to a
major component which will encapsulate the current
functions in other component, in this work named as
Service Search. The Solution Manager would be other
component of the Service Engine, with the function to
specifically ranking and select services based on adaptive
decision tables, but implementing

Fig 2. Results of six ecological niche modelling experiments with

Ouratea spectabilis species, using same input data and six

different modelling algorithms. Models are projected onto the

State Of São Paulo – Brazil.

3º Workshop de Tecnologia Adaptativa – WTA’2009 70

the flexibility of constructing more than a single table,
so as to be able to attend application from different
domains. Finally, as the number of adaptive decision
tables is not limited, by definition, an Adaptive Services

Repository should be incorporated to the Service Engine.
The result would be a Service Engine as presented in Fig.
4.

Other ESB solutions, such as openESB [https://open-
esb.dev.java.net/], supported by SUN Microsystems, also
have functionalities similar to the proposed Service
Engine, despite presenting some architectural differences
and, nowadays, representing a more complete solution,
since many other features were implemented. In such a
case, it is named Application Monitor. However, as ESB
principles are the same, since ESB is mainly an
architectural concept, a similar architectural proposal may
be proposed to each ESB-based solution created for
supporting SOA and SOC in a similar way as the
presented before.

VI. DISCUSSION AND FUTURE WORKS
As criteria definition may be an empirical process,

conflicts and inaccuracy in the services ranking may
occur. Therefore, it will probably be necessary to dedicate

time and effort to construct a relatively reliable adaptive
decision table to each different domain of problems that
the SOA architecture intends to treat.

On the other hand, the adoption of an adaptive decision
tables implemented onto ESBs may bring many choices
and facilities to the user. It also may avoid
misinterpretation of who is guilty when an SOA-based

Fig. 4 – A new architectural proposal to a Service Engine

Fig. 3 – Reference architecture for Ecological Niche Modelling System.

3º Workshop de Tecnologia Adaptativa – WTA’2009 71
service application does not offer the desirable results, in
terms of performance, security, reliability or whatever
other quality criteria which be important in the specific
context.

An additional advantage is that an adaptive decision
table implemented onto ESBs may be used to compare the
results of the execution of similar services furnished by
different providers. In the situations where service
providers have a significant cost, this data may be an
important factor to be considered by IT executives.

Besides, as services may be executed in parallel, by
using different providers, it is possible to evaluate and, if
interesting, to present to the user all results obtained. This
is important, for instance, in modelling applications based
on non-deterministic algorithms [19].

However, to implement the proposals presented in this
paper is not an easy task and, probably, will demand some
effort, even after the architectural constraints were solved
(and implemented). So, many future works may be
proposed, starting from the problem definition.

At first, as the service ranking and selection is
nowadays a very hot research area, to study and formalize
an architectural proposal to incorporate the new concept
of Service Engine to the ESB conceptual definition is a
main challenge and many effort will be applied to this.

Solved the architectural problem, a second important
point is to define the data structures to implement
adaptive decision tables in ESBs. Since services are
registered on UDDI or similar devices distributed on the
Internet, search mechanisms need to be incorporated to
maintain the portability of the solution. Then, an internal
language must be defined, using some specific technique
(e.g.: ontology, metadata) to enable the service inclusion
in the adaptive decision tables.

Other very interesting problem is, supposing services
found, how to rank them, considering services attributes.
At first, it is necessary to exploit the concepts of attributes
of services and, perhaps, this may require some kind of
categorization. Then, after solving this problem, the next
step is to find an adequate function or algorithm to service
ranking or selection. Many proposals were made, but they
are usually based on untrue hypothesis, such as all UDDI
are oriented to ontology or only QoS factors are relevant.
Nevertheless, some approaches are very interesting, and
the necessary solution may be, in fact, a combination of a
set of proposals, instead of choosing only one. This may
depend of several factors, including each problem
domain.

After designing a whole scenario, the next step is to
propose a solution for a specific problem, so as to present
a concept proof. In such a case, as the matter is related to
other works, application in the biodiversity field may be
the chosen domain, since there are already collaborators
interested in evolve software techniques and whose
contribution may not be disregarded.

Since a concept proof is implemented, it will need to
be validate and then, only them, it is possible to imagine
offering this solution as part of a real ESB, for practical
research and/or commercial application.

However, as the set of problems is open in this paper
and many of them may be solved in parallel, maybe
contributions may improve the velocity to reach such a
solution, and they will be very welcome.

VII. CONCLUSION
The implementation of adaptive decision tables

associated to ESBs is a highly complex problem, but it is
also a highly interesting challenge. If the proposals
presented in this paper were all achieved in order to adopt
the solution, probably a big step will be have given into
the direction of the definitive solution to the service
selection and ranking problem.

Exclusively from the adaptive viewpoint, the most
relevant contribution is that the usage of adaptive decision
tables to service ranking and selection. It is not a dream to
imagine that, over time, only better services will be
selected among many similar available solutions, and the
service providers will have to review their priorities. Note
that, however, the “better services” may change, since
adaptive technologies will make regular re-rankings in the
services organization and evaluation criteria.

Finally, adaptive techniques may completely transform
the architectural concept of ESB and SOA and, perhaps,
even the SOC concept itself, since the constant re-
evaluation of the services may lead to a way to evolve the
services over time.

ACKNOWLEDGMENTS
Authors are grateful to FAPESP – Fundação de

Amparo à Pesquisa do Estado de São Paulo – Brazil, for
the support to the openModeller (04/11012-0) and
BioAbelha (04/15801-0) projects.

REFERENCES
[1] BASS, L., CLEMENTS, P., KAZMAN, R., 2003. Software

Architecture in Practice. Second Edition, Addison-Wesley
Professional.

[2] BRAVO, C., NETO, J.J., SANTANA, F.S., SARAIVA,
A.M., 2007. Towards and adaptive implementation of genetic

algorithms. Latin American Workshop on Biodiversity
Informatics – INBI 2007 / CLEI 2007 – XXXIII Conferência
Latino Americana de Informática. 9–12 Outubro. San José,
Costa Rica.

[3] BROOKS, F. P. 1987. No Silver Bullet, IEEE Computer,
Vol. 20-4. 1987.

[4] CASATI, F., CASTELLANOS, M., DAYAL , U., SHAN, M.
2004. Probabilistic, Context-Sensitive, and Goal-Oriented
Service Selection. ICSOC'04, November 15–19, 2004, New
York, New York, USA, pp 316-321.

[5] ENDREI, M. et al., Newling, T. 2004. Patterns - Service-
Oriented Architecture and Web Services. IBM Redbook.

3º Workshop de Tecnologia Adaptativa – WTA’2009 72
[6] GILDERSLEEVE, T. R. 1970. Decision Tables and Their

Practical Application in Data Processing. Englewood Cliffs,
N. J., Prentice Hall.

[7] HOLLAND, J. H. 1975. Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor.

[8] HUGHES, M. L., SHANK, R. M., STEIN, E. S. 1968.
Decision Tables. Midi Publications, Management
Development Institute, Divisions of Information, Industries,
Inc., Wayne, Pennsylvania.

[9] HUHNS, M., SINGH, M.P., 2005. Service-Oriented
Computing: Key Concepts and Principles. IEEE Internet
Computing, v.9, n.1, p.75-81.

[10] LIU, Y., NGU, A. H.H., L. 2004. QoS Computation and
Policing in Dynamic Web Service Selection. WWW2004,
May 17–22, New York, New York, USA. ACM 1-58113-
912-8/04/0005, pp 66-73.

[11] MACKENZIE, C. M. et al., 2006. Oasis Reference Model for
Service Oriented Architecture 1.0.

[12] MAXIMILIEN, E. M., SINGH, M. P. 2005. Multiagent
System for Dynamic Web Services Selection. In Proceedings
of the AAMAS Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE), Utrecht, July.

[13] MENASCÉ, D. A. . QoS Issues in Web Services. 2002. IEEE
Computer, pp 72-75.

[14] MENGE, F. 2007. Enterprise Service Bus. Free and open
source software conference, pp 01-06

[15] NETO, J. J. 2001. Adaptive Rule-Driven Devices – General

Formulation and Case Study. Lecture Notes in Computer
Science. Watson, B.W. and Wood, D. (Eds.): Implementation
and Application of Automata 6th International Conference,
CIAA. Vol. 2494, Pretoria, South Africa, July 23-25,
Springer-Verlag, 2001, pp. 234-250.

[16] NETO, J. J. 2007. Um Levantamento da Evolução da

Adaptatividade e da Tecnologia Adaptativa. Revista IEEE
América Latina. Vol. 5, Num. 7, ISSN: 1548-0992,
Novembro, pp. 496-505.

[17] POLLACK, S.L., HICKS, H.T., and HARRISON, W.J. 1971.
Decision Tables: Theory and Practice, Wiley, New York.

[18] SANTANA, F. S, MURAKAMI, E., SARAIVA, A. M.,
BRAVO, C., CORREA, P. L. P. 2007. Uma arquitetura de
referência para sistemas de informação para modelagem de
nicho ecológico. In: 6º Congresso Brasileiro de
Agroinformática – SBIAgro.

[19] SANTANA, F. S, SIQUEIRA M. F., SARAIVA, A. M. &
CORREA, P. L. P. 2008. A reference business process for

ecological niche modeling. Ecological Informatics v. 3, n. 1,
p. 75-86.

[20] STAL, M., 2002. Web Services: Beyond Component-Based
Computing. Communications of the ACM. Vol. 45, No. 10,
71-76.

