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ABSTRACT 
For representing of digitized straight line segments (DSLS), each 
of the available research techniques has its advantages and 
appropriate applications considering the complexities of real 
world scenarios. Based on adaptive finite automaton (AFA), we 
propose an alternative paradigm that is convenient for problems 
modeled by a set of rules. The main objective is to investigate the 
representation of DSLS through adaptivity, aiming to exploit the 
ability to represent tolerances, scalability, errors and deviations in 
angle or in length of the mentioned segments through a device 
called adaptive DSLS, for short ADSLS. Consequently, ADSLS is 
shown to be effective to represent segments; furthermore, it is 
able to adapt, reacting to circumstance stimuli in a single pass.   

Keywords 
Digital Geometry, Learning and Adaptive Systems, Pattern 
Recognition, Automata, Classification, Error Recovery. 

1. INTRODUCTION 
Despite the visible simplicity of digital lines, they are considered 
fundamental objects in computation [14], in the same way as the 
concept of straight line is important in Euclidean geometry. 
Notwithstanding, digitized straight line segments (DSLS¹) 
incorporates all the dissimilarities and disparities between the 
discrete and the continuous representations.  

DSLS have different properties from a continuous straight line in 
Euclidean space. For instance, DSLS cannot be subdivided 
infinitely to an arbitrarily small segment while maintaining the 
slope of the original line [18]. 

In the digitalization process, it is inevitable that continuous 
straight line segments in Euclidean space be affected by distortion 
or corruption by noise generating a DSLS in string format with 
imperfections (not ideal, affected by errors). Fig. 1 shows an 
example of the string of DSLS in the first quadrant, composed by 
symbols a and b. 

Accordingly, the traditional DSLS model presents restrictions 
even nowadays [7] to operate in dynamical scenarios ranging 
from not accepting changes, in scale, for instance; and there are 
always interference and noise inducing inaccuracies that are not 
considered. 

Among the available research techniques, statistical, neural and 
fuzzy logic approaches may be applied to the problem in question.  

 

1We use DSLS and other abbreviations, to stand as both the 
singular and the plural, each one to be grasped from the context. 

In particular, [10] comments that most similar is a fuzzy term, 
emphasizing that when errors inherent to critical scenarios do not 
follow a known behavior, it is more feasible to use models 
featuring the best similarity with the ideal model, exemplifying 
methods based on the theory of fuzzy sets applied to formal 
languages and automata. 

 
Figure 1 – A generic SLRD in the first quadrant, composed by 

runs of P and Q symbols b, as spaced as possible between codes 

of a, with P and Q constant integers. 

 
An adaptive method to model similarities in parameters of DSLS 
aiming to resemble the ideal model is proposed here because, by 
being able to respond to environmental variable conditions, 
naturally adaptive devices tend to present the required flexibility 
to work in dynamic scenarios. 

An adaptive device changes its behavior dynamically in response 
to input stimuli without interferences from other external agents, 
including users [20]. Normally, they are made by two layers 
comprising a non-adaptive underlying mechanism ND0, associated 
to an adaptive counterpart AM, using the same formalism of the 
first. This growth in complexity profits not only in notable 
increment in expressive power of the combination, but also in 
versatility, as one can choose any consolidated mechanism as the 
non-adaptive device. 

It is advantageous to model complex patterns in such a way to 
benefit from the finite state automaton (FSA) theory background 
[25]. Owing to this evidence, FSA as ND0 are used obtaining an 
adaptive finite automaton (AFA), a Turing-powerful device [22] 
indicated by Expression 1. 

AFA=(ND0,AM).    (1) 

From Expression 1, the adaptive counterpart AM comprises 
adaptive actions responsible for self modification procedures. ND0 
characterizes AFA initial configuration, such as depending on 
stimulus i linked to an operational step i, configuration NDi-1 is 
modified by adaptive actions, resulting that the FSA NDi-1 is 
changed into another FSA NDi belonging to the set of Expression 
2. 

{ND0,ND1,ND2,ND3…NDi.… : i ≥ 0}.   (2) 

The reason for changing the machine configurations is to 
represent, by each configuration, the different model instances, 
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including the errors involved. This issue of errors in parsing has 
been studied mainly in relation to compilers, which are within the 
focus of this study. 

This paper is organized as follows. In Section 2 fundaments of 
AFA are described. Section 3 presents the state-of-the-art, the 
underlying principles necessary for understanding this study, and 
codification details, as well. In Section 4, a structural analysis of 
DSLS is presented. In Section 5, the encoding of adaptive DSLS 
(ADSLS) is outlined, including the procedure for accessing length 
similarity. Section 6 exploits facilities provided by ADSLS in 
some case studies, evaluating the method to conclude in the end. 
In Section 7, final considerations are drawn. 

2. ADAPTIVE FINITE AUTOMATON (AFA) 
From Expression 1, AFA is a rule-driven device comprising an 
adaptive counterpart AM consisting of adaptive actions, which are 
calls to parametric adaptive functions (ADF). 
Furthermore, the AFA formalism [20] regards elementary 
adaptive actions to be applied to the transition set of the 
automaton, so that sets of elementary adaptive actions are 
abstracted in ADF which interconnects the adaptive counterpart to 
NDi as presented in Fig.2 through generic ADF R and S. 

Fig. 2 shows the static graphic representation of a generic AFA 
transition where x is the current state before the transition; y is the 
current state after the transition; i is the input stimulus before the 
transition; R is an ADF executed before applying the transition; 
and, finally, S is an ADF executed after applying the transition. 
Graphically, any ADF R is portrayed by R• in case it is of the 
before type; likewise, any ADF S is an after type if it happens to 
be denoted by •S. 

 

Figure 2 – A generic AFA transition (x, i) : R→y : S, where R and 

S are optional. 

 

When it comes to formats, there are three modalities of 
elementary adaptive actions indicated in Table 1 by a prefix 
symbol ?, + or -. In this table, given a certain pattern transition 
enclosed in brackets, the inspection kind searches the current state 
set for this pattern; the deletion one erases the pattern from the 
current state set; and the insertion kind adds the pattern to the 
current set of transitions. A provision is made that the inspection 
type is executed first, next the deletion, and finally the insertion 
kind; adding that null transitions have the lowest priority. 

Table 1 – Elementary adaptive action format where R and S are 
optional  and [(x, i) : R→y : S]  is the pattern to be specified. 

Prefix Meaning Format 
? Inspection ?[(x, i) : R→y : S] 
- Deletion -[(x, i) : R→y : S] 
+ Insertion +[(x, i) : R→y : S] 

 
About ADF format, in the general case it has a heading composed 
by parameters, generators and variables and a body constituted of 
elementary adaptive actions. All of them are optional; however, if 
parameters are specified, they have to be supplied to activate the 
corresponding ADF. 

Variables are used in place of any of the components of the 
elementary adaptive action, further assigned the actual 
corresponding values in the matching process with the pattern 
given. Then, after the matching process, variables may be 
undefined (in the case no match was found) or defined 
(otherwise). Generators are used to assign names to newly created 
states. Roughly speaking, they are also like special variables, 
which are automatically assigned unique values as soon as an 
ADF is activated. In the activation of an ADF, there occurs the 
assignment of argument values to the parameters, too. Neither 
generators nor parameters are allowed to change any longer, once 
assigned. 

To differ from variables, generators receive the symbol * as 
exponent. 

See the format of a hypothetic 
ADF η, with one generator ger1, 
one variable var1, two parameters 
α, β and a body of three 
elementary adaptive actions. 

η may be activated by a transition such as (1,a) : η (2,6) → 2. The 
adaptive action that activates ADF η happens before the AFA 
changes its state from state 1 to state 2, as long as a token a is 
received. Concluding, in the same way as ADF η is activated in 
this example, by choices of attaching sets of ADF to FSA 
transitions, AFA performance is established, conducting the AFA 
to accept or reject the input stream. 

3. FOUNDANTIONS 
The next topic introduces concepts of DSLS and an overview of 
the state-of-the-art. 

3.1 DSLS Background 
Chain code was introduced by Freeman in 1970 [9] as a one-
pixel-thick boundary descriptor in a grid, and digital straightness 
was conjectured as well. In this model, given a pixel, the main and 
immediate neighborhood of this pixel are shown by symbols, as in 
Fig. 3. 

 

Figure 3 – On the left is a graphical representation of the chain 

code symbols 0-3 of neighborhood-4. On the right, of the chain 

code symbols 0-7 of neighborhood-8 

 

A digital arc S is understood as a set of interconnected pixels 
belonging to a digital image, positioned on a grid such that “ each 
point of the set has exactly two neighbors, except two of these 
points, known as extremes, which have only one neighbor in S” 
[23]. 

Hence, restricting ourselves to neighborhood-4 or neighborhood-
8, the chain is a sequence of elements where each element is a 
symbol from Fig. 3 that represents the vector joining two 

 η ( α, β) {ger1*,var1: 
?[(ri-1,b)→ β 
+[(ger1,a)→ α] 
-[(var1,ε) : A →ri+1]} 
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neighboring pixels of a digital arch, aiming to represent the digital 
arch in question. 

In his model, Freeman stated that strings representing straight 
lines must obey three properties in neighborhood-8: (Prop1) At 
most two types of symbols, representing directions in the chain 
code, can be present, and these can differ only by unity, module 
eight. (Prop2) One of the two symbols always occurs singly. 
(Prop3) Successive occurrences of the single symbol are as 
uniformly spaced as possible among codes of the other value, 
which occurs in groups. 

The meaning of Prop1 to Prop3 is to represent the straight line by 
a sequence of vectors with multiple slope of 45º and the lengths of 
which are either 1 (when horizontal or vertical), or √2 (when 
diagonal). 

As the third property Prop3 was considered somewhat unclear, 
researches proved that the straightness of a digital arc can be 
determined by the absence of unevenness in its chain code, 
necessary and sufficient for attending the chord property [12]. The 
description of the chord property is the following. 

Definition 3.1 Chord Property: A digital arc A is said to have the 
chord property if for every two digital points c and d in A, and for 

each point p =(x, y) on �����, there is a point e = (h, k) of A such 
that max{|x─h|,|y─k|}< 1 where ����� is the line segment between c 
and d [23]. 

Definition 3.1 implied establishing a hierarchical structure 
composed of consecutive numbers corresponding to the runs and 
runs of runs of the symbols specified by Prop1 and Prop2. This 
structure of consecutive numbers is expressed by an additional 
property Prop4: [23] demonstrated that there can be only two 
possible lengths of these different runs, which are two consecutive 
integers (for example, P and P+1). 

On the other hand, works such as [16] showed examples of DSLS 
that violate the regularity implicit in the chord property, 
commenting that, in practice, Prop3 and Prop4 are inviable in 
digital arcs. However, it is more reasonable to expect a slight 
variation in the runs, within a tolerance level, but always keeping 
the overall slope, thus delineating an approximate DSLS. 
Therefore, the criterion used by [16] concentrated in strings that 
satisfied the first two properties of the conjecture, called 
monotonic codes, as they represent digital arcs that are either 
ascending or descending, with reference to coordinate axis x and 
y. 

Estimation of the length of digital segments is another difficulty, 
there being many length estimators (see [5]). As an introduction to 
this subject, from [9] the length of a segment codified by string    
S = s1..si..sn is given by Expression 3. 

lF� �� � �	 � 
���	
�

           (3) 

with v, h and s as representatives of the number of vertical, 
horizontal and diagonal primitives in S, respectively. In reality, 
the mentioned length can only be approximated, requiring some 
correction factor � to adjust lF  equally to Expression 4. 

�� � �
�
��     (4) 

where lE is the estimated length of S, after applying the correction 
factor. 

Moreover, three major works guide this proposal. At first, [2] 
followed an algorithmic procedure similar to that of Freeman 
which defines discrete lines as digitized Euclidean lines. However, 
[7] stated that DSLS are very rigid structures, limiting their 
utilization even after [2] had obtained a certain flexibility. The 
second, [4] introduced the blurred segments, based on the notions 
of discrete geometry presented by [21]. Following the arithmetical 
digital lines presented by [21], [7] proposed an approach to 
improve the work by [4],“that lost all connection with arithmetic”, 
and by [2]. 

Adding that the connection of Euclidean geometry with arithmetic 
discrete geometry takes place in the limit tending to infinity, just 
as a discrete grid being observed from a point sufficiently far 
appears to be continuous [8], we are stating an enhanced method 
by this research taking into account that the adaptive 
representation can express changes in the scales of segments. 

Therefore, an irregular arc may reveal itself as DSLS, provided 
that it is reviewed in a compatible scale, using metrics. In 
summary, adaptivity can be an alternative to incorporate the 
fundamentals of arithmetic discrete geometry to the model of 
Freeman. 

Another key issue in this research is the computational power 
required to parse DSLS. 

3.2 The Syntactic Analysis of DSLS 
One of the procedures to determine a syntactic model starts with 
the definition of a grammar associated with some kind of 
recognition device [3]. This recognizer is called parser to be 
account for parsing, deciding if a given observed string belongs to 
the class represented by the grammar. 

However, noise and distortion complicate the computational 
process of syntactic analysis: apart from distortions, spurious 
primitives are generated, and real primitives cannot be detected. 
Moreover, the very natures of the variable periods of symbols 
codifying DSLS associated with variable lengths are challenges 
for the syntactic analysis. Context dependencies and changes in 
orientation angles, with segments of arbitrary length affect the 
structure of the digital codes of the lines forcing the parser to 
review its analysis [24]. 

The understanding of the problem from the syntactic point of view 
involves the concepts of language, grammar and types of 
grammars. According to Noam Chomsky, hierarchy dated of 
1956, described in [17], languages are classified into four different 
classes: Recursively Languages (or type 0), Context Sensitive 
Languages (or Type 1), Context-Free Languages (or type 2) and 
Regular Languages (or Type 3). There are degrees of complexity 
related to the classes mentioned since class 3 type is a subset of 
class Type 2, Type 2 class is a subset of a class type 1, class and 
type 1 is a subset of Class 0. 

Among the existing research approaches, syntactic methods are 
usually considered unsuitable for tasks involving SLRD. The 
reason is that SLRD requires powerful context-sensitive 
grammars, making it impossible to apply simple formalism, such 
as FSA [6] [14]. Recall that a regular language is specified by a 
regular grammar. The concepts of regular language and FSA are 
equivalent in a sense that for every regular language there is at 
least one FSA that recognizes it and vice versa (see [17] about the 
formalism of grammars, languages and automata). 
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The way the languages type 1 and 0 are accepted by the AFA is 
given by [22]: 

“In the literature, the classical model used for formal 
acceptance of a language type and 1 and 0 is the Turing 
machine. Context dependencies existing in these 
languages can be solved by amendments of its own set 
of states and transition rules by the AFA”[22]. 

In principle, the language type 0 would not be part of the scope of 
this study. However, in order to comply with lengths of DSLS, 
which can be in various scales, theoretically till infinity, this 
research implies language type-0. 

3.3 Codification 
If nothing else is specified, without loss of generality, in this paper 
neighborhood-4 is the default, so that the symbols of property 
Prop1 must be consecutive, module four. More precisely, the 
symbols that make up strings belong to ∑={a,b,c,d}. To satisfy 
Prop1, just consider module 4 along with a=1, b=0, c=3, d=2, for 
neighborhood-4 of Fig. 3 and Fig. 1. 
Any string S=s1…sn, si � ∑ may be represented by its symbol, 
followed by the indication of its i-th elemento si giving the 
Expression 5: 

�� ��� � � ���� � � � ��   (5) 

In Expression 5, n denotes the length of string S, which means 
|S|=n. Symbols si � ∑ may be called tokens, chain code elements 
or stimuli, too. The null string n = 0 is represented by  . If all 
symbols of S are identical, s=s1=s2=…=si=…=sn-1 =sn, a compact 
representation is S=sn. 

The following item presents a brief structural analysis of DSLS 
through their string formats. 

4. STRUCTURAL ANALYSIS 
Another method of representing digital lines, applied in this topic, 
is based on continued fractions, studied by [3]. This mathematical 
approach provides appropriate models to evaluate errors and 
approximations in the digitalization process. After the work of [3], 
continued fractions have been researched, with several 
developments, described in [14]. 

Initially, this item reviews the work by [18] evidencing that 
depending on accuracy requirements, it is possible to derive 
general formulas for the slope and mathematical models of DSLS. 
These models are parametric, with parameters calculated in closed 
form from the slope of DSLS in arbitrary directions on a lattice. 

Without loss of generality, we consider chain codes representing a 
continuous line of orientation angle !
with the positive axis x such 
that ! � [0,π/4] (indicates that ! belongs to the closed interval 
between 0 to π/4 radians) Hence, symbol a occurs alone while 
symbol b is clustered in the corresponding strings codifying 
DSLS. 

In order to keep the slope of a digital line, the smallest segment of 
a DSLS is called the Unit of the Straight Line Segment (USLS). 

Supposing a DSLS codified by a string S with |S|=n. Therefore, S 
is the concatenation of λ substrings, where n > λ and 1≤ i ≤ λ, as 
each substring is a USLS U given by Expression 6. 

�� "� 
� � � ����� � #�   (6) 

In Expression 6, the null DSLS (λ = 0) is not defined. Besides, we 
do not account yet that the first and last USLS (U1 and Uλ ) may be 
truncated. 

4.1 Models 
Taking in to consideration the slope SL as the tangent of an 
Euclidean segment lying in the first octant, the models are given 
by the continued fraction of Expression 7, 

�$ � %
& � '

() 

*) 


+),


     (7) 

where the positive and negative signs are chosen to accelerate the 
convergence of the fraction and reducing the number of terms 
(indicative of the order of the model). Additionally, A, B (B ≤ A), 
and P are positive integers, while M,K,… are not negative integer. 

Two principal models were proposed to describe the pattern 
arrangement of DSLS symbols. The first was denominated first 
order model because slope SL was a first-order continued fraction. 
In the first-order model, the line segment traverses B rows and A 
columns with the slope SL = B/A = 1/P; where P, the first-order 
slope factor, is an integer. It means that A pixels of the line 
segment are uniformly distributed in B rows with P = A/B pixels 
in each row. 

Hence, each row is a USLS which contains P consecutive pixels. 
The row-by-row run length representation of the line segment is 
PP···P, or PB where P = A/B. 

For the first order model, strings �- of USLS are given by 
Expression 8 and shown by Fig. 4. 

�-� ./0�1 2 ��    (8) 

 

Figure 4 – First order model, characterized by P as a constant 

integer. 

In the second model, slope SL is a second order fraction SL = 
B÷A = 1÷[P±(1/M)]; and P is the nearest integer of A / B : P =[A / 
B]. This means that pixels are adjusted in each USLS by placing P 
pixels in each of (M - 1) rows, with Q pixels in the remaining row 
where Q can have only one of following two possibilities: Q = 
(P+1) or Q = (P – 1). That is, the adjustment is made by 
decreasing P of a unit, or by increasing P of a unit, as shown by 
Prop4. The row-by-row run-length representation of the line 
segment in the second order model can be expressed as 
P…PQP…PQ  shown in Fig. 1. 

In the second order model, strings �- of each USLS may be of 
two kinds: 

�-� 3.
/0�

45�














































./6'0�1 2 �
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In this second model, the main orientation angle, the one that 
stands out in the distribution of local angles related to the USLS is 
θS = arctan(1/P) with slope 1/P. However, USLS occur with 
inclination 1/Q as spaced as possible. Thus, the orientation angle 
! with the positive axis x of the continuous line that led to the 
codification will be in the range ! � [arctan(1/(P+1)), arctan(1/P)] 
(assuming Q = P+1) [13]. 

 

4.2 Proposal Summary 

This proposal can be summarized in the use of a modified chord 
property for models of higher orders (order n), thus incorporating 
tolerances in angle and in length of DSLS. The modified chord 
property changes neighborhood of Definition 3.1 into a variable 
neighborhood function such as max{|x─h|,|y─k|}< n where n is 
the order of the model that depends on the momentary situation 
and the length of the segment, to sum up, of the stimuli. That is to 
say, the neighborhood function of DSLS must have a relatively 
large width, proportional to the measured length towards the 
overall linear structure [19]. An outline of these higher order 
models can be seen in Fig. 4 by altering P of the first order model 
to be a variable integer, ranging theoretically till infinity: 
 P(a,bm) : 0 ≤ m < ∞. 

5. IMPLEMENTATION OF ADSLS 
Regarding techniques for error recovery in this study, in order to 
exhibit common characteristics to what is being alluded here with 
other areas, it is often convenient to represent the real numbers in 
a given circumference and not in a straight line, as usual. 
Especially, from the circumference of unit length, when defining 
an arbitrary origin point, one represents any point T by its 
measured distance around the circle in a counterclockwise 
direction (this by definition). The division of the circle can be 
from the Farey series in the form of spyrographs described on 
page 326 of [15]. 
The techniques of error recovery of syntactic analysis of DSLS 
employ an approach similar to spyrographs in the form of 
adaptive loops, such that, by these loops, the circumference is 
built by states of the AFA, which moves cyclically and 
continuously through the closed loop. In effect, adaptive loops 
have their total number of states according to tolerance levels. 

5.1 Starting and Final Structures of DSLS 
In order to simplify the description of automata, take in to account 
that the abbreviation HTST means a sequence head-to-toe of 
transitions that consumes the same symbol; besides, each state 
belonging to the sequence may identified by the first state 
followed by respective sequential index. The extremes of a 
hypothetic DSLS may be truncated or completely out of the global 
structural model. In the former case, the sequence should be 
accepted; in the latter rejected. Fig. 5 exposes an AFA which tests 
the first USLS of a DSLS (a4b)n modeled from Expression 8. 
Parameter r4 is the last state of the HTST starting in r. From this 
arrangement, the AFA removes up to four null transitions by ADF 
RA (see Table 2). Elucidating, each time RA is activated by token 
a, it removes from the automaton one of the null transitions that 
constitutes the HTST. Furthermore, any token b received conducts 
the AFA to the final state; conditioned to if more than four tokens 
a are received, the sequence is rejected. The analysis of the other 
extreme is quite similar. Parameter xi and variables vr1, vr2, vr3 

and vr4 permit general application of RA in different topologies, 
as is going to be seen through this paper. 

Figure 5 – AFA for testing the first USLS of a DSLS from (a4b)n 

model. 

Table 2 – Parametric ADF RA, of AFA of Fig. 5 

RA(xi){vr1, vr2, vr3, vr4: 
-[(xi-1,ε) → xi] 
-[(xi, vr1) : vr2 → vr3 : vr4] 
+[(xi-1, vr1) : vr2 → vr3 : vr4] 
-[(r,a) → a : RA(xi)] 
-[(r,a) → a : RA(xi-1)]  } 

5.2 Slope Errors of DSLS 
This topic illustrates the recognition of DSLS subjected to slope 
errors, exemplifying by USLSi = {a

nb : 3 ≤ n ≤ 5}.  
Fig. 6 shows the initial configuration of the automaton prepared to 
accept truncated USLS1 similar to the last item. ADF are 
described in Table 3. With the first token b consumed, ADF B is 
activated, which removes transitions of the initial configuration, 
changing the automaton topology to that of Fig. 7.  

Afterwards, the AFA starts to consume the succeeding USLSi :     
i > 1 by each cycle u,u1,u2,u3,u4,u5,u in agreement with each 
USLSi. ADF RB guarantees transitions to states u4,u5 will occur 
after each USLSi processed, since RA removes transitions to these 
states. 

This process is repeated until the input stream is exhausted. A 
token c is included just to signalize the end of the DSLS, when the 
automaton reaches the final state if the process is successful. On 
the other hand, if more than 5 tokens a are received, - [(xi, vr1) : 
vr2 → vr3 : vr4] of RA removes transition of c to the final state, 
rejecting the sequence. 

Strings of Fig. 8 and Table 4 show the performance of the AFA. 
These strings follows the model USLSi = {a

nb: 3 ≤ n ≤ 5}, 
truncating USLS1 in some strings, too. Strings out of this model 
are rejected. Note that the AFA performance does not depend on 
the length of the input DSLS. 

 

 

 

 

 

Figure 6 – Initial Configuration for the automaton to detect a 

DSLS considering slope errors 
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Figure 7 – Configuration of AFA of Fig. 6 after the activation of 

ADF B 

 

Table 3 – ADF of AFA of Fig. 6 and Fig. 7. ADF RA is in table 2 
 

 

 

 

 

 

 

5.3 DSLS Length Similarity 
A method to represent and apply tolerances is by a graph, or  loop 
exemplified in Fig. 9 such that the number of states of the loop 
(that is, its size) is changed adaptively in function, for example, of 

 

Figure 8 – Examples of DSLS produced by USLS = {anb : 3 ≤ n ≤ 

5}, accepted by AFA of Fig. 6 and Fig. 7 

 

Table 4 – Strings of Fig. 8 (from left to right) accepted by AFA of 
Fig. 6 and Fig. 7. 

 

 

 

 

 

 

angle θS related to axis x; besides, θS gives the main direction of 
DSLS S. Fig. 9 shows a loop containing to states, ranging from L1 
to Lt0. 

 
Figure 9 – A generic cyclic loop. 

 

Considering that this graph is only for consultation by the 
automaton, the specific symbol of the transitions between its 
states becomes irrelevant. The reasoning with the method is that, 
for each symbol belonging to the DSLS S such that |S| = n, the 
automaton has to access the loop, advancing counterclockwise 
through the cycle, circulating through the graph as many times as 
the value of n. 

Factor 0 < ψ < 1 is an error rate meaning a small percentage of n, 
assuming a simple case in which the length is estimated by the 
number of symbols in the neighborhood-4, given by Expression 4. 
Since n is variable depending on lengths, the loop is adapted by 
changing the amount of states to of Fig. 9, according to 
Expression 9 and θS, the main angle of the DSLS, as well. 

to ≈ [1/(1-ψ )].      (9) 

For a given value of n, at each turn in the graph, the AFA pumps a 
primitive thereby obtaining a syntactic measurement parameter 
(1- ψ) relative to S. It follows that, in the end, n/to symbols would 
have been pumped with the last symbol of S. 

Therefore, [n/to] symbols can be excluded from the total n, to 
correct the estimated length to lE. It is also possible to implement 
inequalities in ADSLS by which to judge lengths of two 
segments, |S1| = n and |S2| = m in a range of values of Expression 
10. 

n - [n/to] ≤ |S2| = m ≤ n +[n/to].                (10) 

6. CASE STUDIES 
These case studies center on the classification of basic geometric 
shapes by ADSLS. Regardless of error causes from the previous 
stages, i.e. segmentation algorithms that feed an input stream W 
for classification, we are concerned with tiny errors, abstracted in 
two broader issues in this item: angle errors of DSLS, and length 
errors of DSLS. Necessarily, similarity is the essential question to 
be considered. 

Ironically, in shape classification, the most elementary is the 
segmentation stage in performing attribute-extraction by the 
selected primitives; not only more complexity is obligatory for the 
classifier, but also higher computational power, too, and vice 
versa [26]. Nevertheless, as already seen in item 3.1, modern 
algorithms usually detect nearly DSLS, while guaranteeing 
approximate straightness. Hence, the classification step could be 
concentrated on detecting shape geometric properties affected by 
existing length errors. In addition, the templates built adaptively 
by the AFA of these case studies are simpler than the 
implementation introduced in topic 5, with the advantage of 

RB{: 
-[(u4,ε)→u5] 
-[(u3,ε)→u4] 

+[(u4,ε)→u5] 
+[(u3,ε)→u4]  } 

B{: 
-[(r,a) → r : RA(ri)] 
-[(r,ε) → r1] 
-[(r1,ε) →r2] 
-[(r2,ε) →r3] 
-[(r3,ε) → r4] 
+[(u,a) →u1] 

                              +[(u1,a) →u2] 
                              +[(u2,a) →u3] 
                              +[(u3,a) →u3 : RA (u5)] 
                              +[(u5, ε) →u4] 
                              +[(u4, ε) →u3] 
                              +[(u5,b) →u : RB] 
                              +[(u3,c) →LN]  } 

Strings of Fig. 8 Codification 
1 
2 
3 
4 
5 
6 
7 

a2b 

a2ba3b 

ba3b 

a3ba3ba4ba3b 

a3ba3ba4ba3ba3ba3ba4ba3b 

a3ba3ba4ba3ba5ba4ba3ba4b 

a3ba5ba3ba4ba3ba3ba4ba3ba5ba4b 
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exhibiting additional flexibilities. They resemble Fig. 10 for the 
first-quadrant.

 

Figure 10 – A Simplified Model for Automaton Construction. 

Example with 6 USLS. 

As a consequence, once the segmentation stage accounts for 
straightness, the AFA for classification would be simpler than the 
implementations described earlier. Furthermore, it may be 
convenient, in some systems, to have a simpler classifier at the 
starting process, without regarding angle errors, to capture some 
geometric properties quickly by the overall pattern arrangement of 
USLS, refining the process lately, if necessary. 

Next, in the first case study, an automaton that recognizes the 
square is exemplified, irrespective of length errors. 

6.1 ADSLS for Shape Classification 
The ADSLS of Fig. 11 and Table 5 recognizes the square. It is an 
extension of the one in Fig. 6 and 7 utilizing the same ADF RA. 
An improvement is that each time an USLSi from the first side of 
the square is consumed; ADF IB is activated, which constructs the 
templates of the next 3 sides. These templates are built between 
states s to t1: second side, w to w1: third side, p to p1: fourth side. 
In conclusion, from Expression 6, an input stream W = S1S2S3S4, 
concatenation of four DSLS S1,S2,S3,S4, can be accepted by the 
ADSLS in case it codifies the square, such as #:
 �
#:� 
� #:; 
�
#:<. Experiments are in the next topic. 

6.2 Shape Similarity: Slope Errors of DSLS 
To demonstrate the effect of slope errors in classification, the 
automaton of the last item was fed with strings W = S1S2S3S4 
corresponding to Fig. 12-Left, Fig. 12-Right, Fig. 13-Left and 
Fig.13-Right, varying the slope of individual DSLS. 

 

Figure 11 – Initial Configuration of ADSLS that Recognizes the 
Square without Length Errors 

Albeit constituted of DSLS with variable slopes, the string of Fig. 
12-Left was accepted by the ADSLS. The first side does not have 
slope variations; still, combined slope variations from other sides 
distort the square. Even though the ADSLS is capable of 
capturing the global geometric property, it accepts the sequence 
that could be rejected by a more local method. The string of Fig. 
12-Right, was accepted. From the previous string, this one 
introduces slope variations in the first shape side, so that total 
combination of slope variation from all sides diminishes shape 
distortions visually. The string of Fig. 13-Left was accepted 
resulting in a shape with less distortion than those from Fig. 12. In 
Fig. 13-Left, the first, third and fourth shape sides do not have 
much slope variations. Slope variations from the third side are 

difficult to visualize, yet not an ideal DSLS; conversely, the 
square is visually easily identified. The string of Fig. 13-Right was 
rejected because USLS (ba5) is out of the established range. USLS 
(ba5) is easily identified visually in the overall formation. 
Elementary changes in ADF, such as RA, would permit accepting 
the sequence, adjusting the classifier if required by specifications; 
otherwise segmentation algorithms should be more precise. 

Table 5 – Adaptive Function IB of ADSLS of Fig. 11 

IB{ti+1*,wi+1*,pi+1* : 
-[(ti,ε)→w] 
-[(wi, ε)→ p]  
-[(pi,ε)→q] 
+[(ti+1,b)→ ti+1] 
+[(ti,c)→ ti+1] 
+[(ti+1, ε)→ w] 
+[(wi+1,b)→wi+1] 
+[(wi,c)→ wi+1] 
+[(wi+1, ε)→ p] 
+[(pi+1,b)→ pi+1] 
+[(pi,c)→ pi+1] 
+[(pi+1, ε)→ q]} 

6.3 Shape Similarity: Scaling 
The ADSLS in Fig. 14 and Table 6, constructed by modifications 
of previous ADF, recognizes the triangle fed by W = S1S2S3. The 
triangles of Fig. 15 are in different scales, both accepted by the 
automaton. The accepted triangle may be as big as possible; 
however, the smallest one is limited to one USLS for each triangle 
side. 

                 

Figure 12 – Strings W=S1S2S3S4. Left:[(ba
4)4b(cb3)(cb4)(cb3) 

(cb4)c(dc3)4d(ad3)3(ad4)a]. Right: :[(ba3)(ba4)(ba3)(ba4)b 

(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a]. 

                   

Figure 13 – Strings W=S1S2S3S4. Left: string 

[(ba3)4b(cb3)(cb4)(cb3) (cb4)4c(dc3)4d(ad3)4a]. Right: string 

[(ba3)(ba5)(ba3)2b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a]. 

6.4 Shape Similarity: Length error of DSLS 
For the triangle, the existence of approximate shapes is informed 
by W = = S1S2S3; where S1 is the pattern string, S2 and S3 are 
observed strings to be compared by Expression 10 with S1 within 
the tolerance informed by substring =; essentially = is string = = 
>?@ composed by tokens y, given by the � of Expression 9. Any 
symbol like y not belonging to ∑ could be used. 

6.4.1 Implementation 
Referring to the ADSLS of Fig. 16 showing the loop of Fig. 9 to 
the right and 3 pointers, pa, pc, pd, it is convenient to clarify that 
pointers are elementary null transitions; for instance, pointer pd is 
pointing to w by the transition [(pd, ) → w], called simply by its 
fixed state pd. In case tolerance is informed to the ADSLS by 
tokens y related to Expression 9, ADF RO consumes tokens y, 
constructing the loop, introducing the 3 pointers, too. Transition 
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[(r1,a) → r1] is a simplification to consume possible starting 
symbols a of USLS1. With first symbol b, the ADSLS begin to 
consume subsequent USLSi. As already described, each time an 
USLSi from the first side of the triangle is consumed, ADF IB and 
RB are activated. Besides constructing the templates of the next 2 
sides between states t1 to t2: second side, t3 to t4: third side, ADF 
IB has now the new task to turn the loop by pointer pa. 
Each time pa makes a complete turn through the loop, ADF IB 
executes the following: i) include one new USLS in the loop 
[(t2,b) → t2 : OT] and another in [(w,d) → w : OT]; ii) insert a 

Table 6 – Adaptive Functions of ADSLS of Fig. 14 
 

 

 

 

 

 

 

 

 

Figure 14 – Example of ADSLS for Triangle Classification 

                     

Figure 15 – Examples of triangles in different scales, classified 

correctly by ADSLS of Fig. 14. Left: string  

(a3b)6(c3b)(c4b)(c3b)4d12.  Right: string (a3b)9(c3b)(c4b)(c3b)7d18 

transition from the last state of each USLS included before: in the 
first loop, one that consumes d to t3; in the second, a null 
transition to TR; iii) moves pc to a state just one USLS below in 
direction to t1, inserting one transition that consumes d from the 
state pointed by pc to t3; iv) moves pd to point just one USLS 
“below” in direction to t3, inserting one null transition from the 
state pointed by pd to TR. 

Nonetheless, in case ADF OT is activated, it just removes the 
transition [(w, ) →TR] to the final state, since the shape is too big, 
out of tolerance, rejecting the input string. In the same way, too 
mall shapes are rejected because the ADSLS cannot find either a d 
transition to t3, or a null transition to final state TR. 

6.4.2 Examples 

Only two examples of DSLS length errors are provided, since any 
shape meeting tolerance �  is accepted, no matter its scale; other-
wise it is rejected. Shapes of Fig. 17 were accepted by the ADSLS 

 
Figure 16 – Initial configuration of ADSLS for classifications of 

the triangle affected by length errors 

                

Figure 17 – Shapes classified correctly with 20% tolerance. 

Left:(a3b)9(c3b)8d17. Right:(a3b)9(c3b)11d20 

with � defining a length tolerance of 20%. Both shapes are easily 
identified visually, though the shape to the right does not close, 
splitting the contour because of length errors. On the contrary, the 
one to the left presented a smaller contour than the ideal triangle, 
leaving the USLS1 of first side out. This contour distortion 
between the two shapes occurred because, first, the length of the 
second side changed from 8 x USLSi to 11 x USLSi; second, the 
length of third side changed from 17 x d into 20 x d. 

6.5 Conclusion 
Essentially, angle errors of DSLS have a local character, as 
compared to length analysis, which is more global, with a greater 
level of information regarding shapes. In effect, in case (relative) 
straightness could be guaranteed by the segmentation algorithm, 
then the classifier should geometrically evaluate the arrangement 
of USLSi, globally. Thus, in this case, the classifier would be less 
complex than if it had to perform straightness analyses. 
As a consequence of little difficulty to change adaptive actions, 
the classifier development is relatively simple, as altering the 
behavior of the classifier to comply with segmentation algorithms 
needs, too.  
Hence, a non-stochastic and flexible application for Syntactic 
Pattern Recognition based on FSA theory, associated with low 
sophisticated shape descriptors become an option. 

7. FINAL CONSIDERATIONS 
To our knowledge, this is the first attempt to introduce AFA in 
this subject, considering minute errors of DSLS. By traditional 
techniques, the resulting automaton would have to be 
implemented a priori, with high level of complexity to treat errors 
that cause imprecise models or imprecise scale of DSLS. These 
drawbacks have caused the lack of automaton-based solutions in 
the literature; most results have grammar foundation [3]. An 
alternative would be to apply fuzzy techniques, such as adaptive 
fuzzy finite automaton. As reported by [1], models that rely on 
hidden states are difficult for human experts to understand, 
increasing complexity.  

RB{: 

-[(s2,ε)→s1] 

-[(s1,ε)→s] 

+[(s2,ε)→s1] 

+[(s1,ε)→s]} 

 IB  {t3i+1*,t3i+2*, t3i+3*,wi+1*: 
-[(ti,ε)→w] 
-[(w3i,ε)→p] 
+[(t3i,c)→ t3i+1] 
+[(t3i+1,c)→ t3i+2] 
+[(t3i+2,b)→ t3i+3] 
+[(t3i+2, c)→ t3i+2] 
+[(t3i+3, ε)→ w ] 

                           +[( wi , d)→ wi+1] 
                             +[(wi+1, ε )→ q ]} 



39 

 

Furthermore, computational power is another question involved. 
In the opinion of [11] the capability of a more powerful class of 
grammars should rejuvenate syntactic research originally pursued 
in the 70s-80s. Our study showed some capabilities of adaptive 
techniques related to digital geometry, enabling us to go a step 
further; emphasizing that adaptivity may indeed contribute to this 
rejuvenation of the field, as well.  

As [24] says, it is considered very difficult to design a one-pass 
algorithm for identification or generation of DSLS, yet noise-free. 
As a starting-point, we have outlined a one-pass method by which 
error tolerances are supplied by previous stages and provided to 
the AFA. Models of DSLS strings were also presented associated 
to the corresponding automaton. By such models, a priority for the 
future is the study of inference algorithms, integrating similarities 
of frequently repeating DSLS as another parameter of self 
adaptation and learning by the automaton. 

Case studies with basic applications demonstrated the simplicity 
and efficiency of the method. Compared with other methods of 
digital line representation, some important advantages of this 
proposal are that their models are easy to understand, relatively 
simple to program and flexible to accept changes in their 
behavior, allowing the use of traditional syntactic tooling. The 
expressive power of the model incorporates parameters of DSLS 
such as angle, length and tolerances. 
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