
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

31

Adaptive Modeling of Digital Straightness Applied to
Geometric Representation Enhancement

Leoncio C. Barros Neto
Engineering School
São Paulo University
São Paulo, Brazil.

André R. Hirakawa
Engineering School
São Paulo University
São Paulo, Brazil.

Antonio M. A. Massola
Engineering School
São Paulo University
São Paulo, Brazil.

ABSTRACT
For representing of digitized straight line segments (DSLS), each
of the available research techniques has its advantages and
appropriate applications considering the complexities of real
world scenarios. Based on adaptive finite automaton (AFA), we
propose an alternative paradigm that is convenient for problems
modeled by a set of rules. The main objective is to investigate the
representation of DSLS through adaptivity, aiming to exploit the
ability to represent tolerances, scalability, errors and deviations in
angle or in length of the mentioned segments through a device
called adaptive DSLS, for short ADSLS. Consequently, ADSLS is
shown to be effective to represent segments; furthermore, it is
able to adapt, reacting to circumstance stimuli in a single pass.

Keywords
Digital Geometry, Learning and Adaptive Systems, Pattern
Recognition, Automata, Classification, Error Recovery.

1. INTRODUCTION
Despite the visible simplicity of digital lines, they are considered
fundamental objects in computation [14], in the same way as the
concept of straight line is important in Euclidean geometry.
Notwithstanding, digitized straight line segments (DSLS¹)
incorporates all the dissimilarities and disparities between the
discrete and the continuous representations.

DSLS have different properties from a continuous straight line in
Euclidean space. For instance, DSLS cannot be subdivided
infinitely to an arbitrarily small segment while maintaining the
slope of the original line [18].

In the digitalization process, it is inevitable that continuous
straight line segments in Euclidean space be affected by distortion
or corruption by noise generating a DSLS in string format with
imperfections (not ideal, affected by errors). Fig. 1 shows an
example of the string of DSLS in the first quadrant, composed by
symbols a and b.

Accordingly, the traditional DSLS model presents restrictions
even nowadays [7] to operate in dynamical scenarios ranging
from not accepting changes, in scale, for instance; and there are
always interference and noise inducing inaccuracies that are not
considered.

Among the available research techniques, statistical, neural and
fuzzy logic approaches may be applied to the problem in question.

1We use DSLS and other abbreviations, to stand as both the
singular and the plural, each one to be grasped from the context.

In particular, [10] comments that most similar is a fuzzy term,
emphasizing that when errors inherent to critical scenarios do not
follow a known behavior, it is more feasible to use models
featuring the best similarity with the ideal model, exemplifying
methods based on the theory of fuzzy sets applied to formal
languages and automata.

Figure 1 – A generic SLRD in the first quadrant, composed by

runs of P and Q symbols b, as spaced as possible between codes

of a, with P and Q constant integers.

An adaptive method to model similarities in parameters of DSLS
aiming to resemble the ideal model is proposed here because, by
being able to respond to environmental variable conditions,
naturally adaptive devices tend to present the required flexibility
to work in dynamic scenarios.

An adaptive device changes its behavior dynamically in response
to input stimuli without interferences from other external agents,
including users [20]. Normally, they are made by two layers
comprising a non-adaptive underlying mechanism ND0, associated
to an adaptive counterpart AM, using the same formalism of the
first. This growth in complexity profits not only in notable
increment in expressive power of the combination, but also in
versatility, as one can choose any consolidated mechanism as the
non-adaptive device.

It is advantageous to model complex patterns in such a way to
benefit from the finite state automaton (FSA) theory background
[25]. Owing to this evidence, FSA as ND0 are used obtaining an
adaptive finite automaton (AFA), a Turing-powerful device [22]
indicated by Expression 1.

AFA=(ND0,AM). (1)

From Expression 1, the adaptive counterpart AM comprises
adaptive actions responsible for self modification procedures. ND0
characterizes AFA initial configuration, such as depending on
stimulus i linked to an operational step i, configuration NDi-1 is
modified by adaptive actions, resulting that the FSA NDi-1 is
changed into another FSA NDi belonging to the set of Expression
2.

{ND0,ND1,ND2,ND3…NDi.… : i ≥ 0}. (2)

The reason for changing the machine configurations is to
represent, by each configuration, the different model instances,

32

including the errors involved. This issue of errors in parsing has
been studied mainly in relation to compilers, which are within the
focus of this study.

This paper is organized as follows. In Section 2 fundaments of
AFA are described. Section 3 presents the state-of-the-art, the
underlying principles necessary for understanding this study, and
codification details, as well. In Section 4, a structural analysis of
DSLS is presented. In Section 5, the encoding of adaptive DSLS
(ADSLS) is outlined, including the procedure for accessing length
similarity. Section 6 exploits facilities provided by ADSLS in
some case studies, evaluating the method to conclude in the end.
In Section 7, final considerations are drawn.

2. ADAPTIVE FINITE AUTOMATON (AFA)
From Expression 1, AFA is a rule-driven device comprising an
adaptive counterpart AM consisting of adaptive actions, which are
calls to parametric adaptive functions (ADF).
Furthermore, the AFA formalism [20] regards elementary
adaptive actions to be applied to the transition set of the
automaton, so that sets of elementary adaptive actions are
abstracted in ADF which interconnects the adaptive counterpart to
NDi as presented in Fig.2 through generic ADF R and S.

Fig. 2 shows the static graphic representation of a generic AFA
transition where x is the current state before the transition; y is the
current state after the transition; i is the input stimulus before the
transition; R is an ADF executed before applying the transition;
and, finally, S is an ADF executed after applying the transition.
Graphically, any ADF R is portrayed by R• in case it is of the
before type; likewise, any ADF S is an after type if it happens to
be denoted by •S.

Figure 2 – A generic AFA transition (x, i) : R→y : S, where R and

S are optional.

When it comes to formats, there are three modalities of
elementary adaptive actions indicated in Table 1 by a prefix
symbol ?, + or -. In this table, given a certain pattern transition
enclosed in brackets, the inspection kind searches the current state
set for this pattern; the deletion one erases the pattern from the
current state set; and the insertion kind adds the pattern to the
current set of transitions. A provision is made that the inspection
type is executed first, next the deletion, and finally the insertion
kind; adding that null transitions have the lowest priority.

Table 1 – Elementary adaptive action format where R and S are
optional and [(x, i) : R→y : S] is the pattern to be specified.

Prefix Meaning Format
? Inspection ?[(x, i) : R→y : S]
- Deletion -[(x, i) : R→y : S]
+ Insertion +[(x, i) : R→y : S]

About ADF format, in the general case it has a heading composed
by parameters, generators and variables and a body constituted of
elementary adaptive actions. All of them are optional; however, if
parameters are specified, they have to be supplied to activate the
corresponding ADF.

Variables are used in place of any of the components of the
elementary adaptive action, further assigned the actual
corresponding values in the matching process with the pattern
given. Then, after the matching process, variables may be
undefined (in the case no match was found) or defined
(otherwise). Generators are used to assign names to newly created
states. Roughly speaking, they are also like special variables,
which are automatically assigned unique values as soon as an
ADF is activated. In the activation of an ADF, there occurs the
assignment of argument values to the parameters, too. Neither
generators nor parameters are allowed to change any longer, once
assigned.

To differ from variables, generators receive the symbol * as
exponent.

See the format of a hypothetic
ADF η, with one generator ger1,
one variable var1, two parameters
α, β and a body of three
elementary adaptive actions.

η may be activated by a transition such as (1,a) : η (2,6) → 2. The
adaptive action that activates ADF η happens before the AFA
changes its state from state 1 to state 2, as long as a token a is
received. Concluding, in the same way as ADF η is activated in
this example, by choices of attaching sets of ADF to FSA
transitions, AFA performance is established, conducting the AFA
to accept or reject the input stream.

3. FOUNDANTIONS
The next topic introduces concepts of DSLS and an overview of
the state-of-the-art.

3.1 DSLS Background
Chain code was introduced by Freeman in 1970 [9] as a one-
pixel-thick boundary descriptor in a grid, and digital straightness
was conjectured as well. In this model, given a pixel, the main and
immediate neighborhood of this pixel are shown by symbols, as in
Fig. 3.

Figure 3 – On the left is a graphical representation of the chain

code symbols 0-3 of neighborhood-4. On the right, of the chain

code symbols 0-7 of neighborhood-8

A digital arc S is understood as a set of interconnected pixels
belonging to a digital image, positioned on a grid such that “ each
point of the set has exactly two neighbors, except two of these
points, known as extremes, which have only one neighbor in S”
[23].

Hence, restricting ourselves to neighborhood-4 or neighborhood-
8, the chain is a sequence of elements where each element is a
symbol from Fig. 3 that represents the vector joining two

 η (α, β) {ger1*,var1:
?[(ri-1,b)→ β
+[(ger1,a)→ α]
-[(var1,ε) : A →ri+1]}

33

neighboring pixels of a digital arch, aiming to represent the digital
arch in question.

In his model, Freeman stated that strings representing straight
lines must obey three properties in neighborhood-8: (Prop1) At
most two types of symbols, representing directions in the chain
code, can be present, and these can differ only by unity, module
eight. (Prop2) One of the two symbols always occurs singly.
(Prop3) Successive occurrences of the single symbol are as
uniformly spaced as possible among codes of the other value,
which occurs in groups.

The meaning of Prop1 to Prop3 is to represent the straight line by
a sequence of vectors with multiple slope of 45º and the lengths of
which are either 1 (when horizontal or vertical), or √2 (when
diagonal).

As the third property Prop3 was considered somewhat unclear,
researches proved that the straightness of a digital arc can be
determined by the absence of unevenness in its chain code,
necessary and sufficient for attending the chord property [12]. The
description of the chord property is the following.

Definition 3.1 Chord Property: A digital arc A is said to have the
chord property if for every two digital points c and d in A, and for

each point p =(x, y) on �����, there is a point e = (h, k) of A such
that max{|x─h|,|y─k|}< 1 where ����� is the line segment between c
and d [23].

Definition 3.1 implied establishing a hierarchical structure
composed of consecutive numbers corresponding to the runs and
runs of runs of the symbols specified by Prop1 and Prop2. This
structure of consecutive numbers is expressed by an additional
property Prop4: [23] demonstrated that there can be only two
possible lengths of these different runs, which are two consecutive
integers (for example, P and P+1).

On the other hand, works such as [16] showed examples of DSLS
that violate the regularity implicit in the chord property,
commenting that, in practice, Prop3 and Prop4 are inviable in
digital arcs. However, it is more reasonable to expect a slight
variation in the runs, within a tolerance level, but always keeping
the overall slope, thus delineating an approximate DSLS.
Therefore, the criterion used by [16] concentrated in strings that
satisfied the first two properties of the conjecture, called
monotonic codes, as they represent digital arcs that are either
ascending or descending, with reference to coordinate axis x and
y.

Estimation of the length of digital segments is another difficulty,
there being many length estimators (see [5]). As an introduction to
this subject, from [9] the length of a segment codified by string
S = s1..si..sn is given by Expression 3.

lF� �� � �	 �
���	
�

 (3)

with v, h and s as representatives of the number of vertical,
horizontal and diagonal primitives in S, respectively. In reality,
the mentioned length can only be approximated, requiring some
correction factor � to adjust lF equally to Expression 4.

�� � �
�
�� (4)

where lE is the estimated length of S, after applying the correction
factor.

Moreover, three major works guide this proposal. At first, [2]
followed an algorithmic procedure similar to that of Freeman
which defines discrete lines as digitized Euclidean lines. However,
[7] stated that DSLS are very rigid structures, limiting their
utilization even after [2] had obtained a certain flexibility. The
second, [4] introduced the blurred segments, based on the notions
of discrete geometry presented by [21]. Following the arithmetical
digital lines presented by [21], [7] proposed an approach to
improve the work by [4],“that lost all connection with arithmetic”,
and by [2].

Adding that the connection of Euclidean geometry with arithmetic
discrete geometry takes place in the limit tending to infinity, just
as a discrete grid being observed from a point sufficiently far
appears to be continuous [8], we are stating an enhanced method
by this research taking into account that the adaptive
representation can express changes in the scales of segments.

Therefore, an irregular arc may reveal itself as DSLS, provided
that it is reviewed in a compatible scale, using metrics. In
summary, adaptivity can be an alternative to incorporate the
fundamentals of arithmetic discrete geometry to the model of
Freeman.

Another key issue in this research is the computational power
required to parse DSLS.

3.2 The Syntactic Analysis of DSLS
One of the procedures to determine a syntactic model starts with
the definition of a grammar associated with some kind of
recognition device [3]. This recognizer is called parser to be
account for parsing, deciding if a given observed string belongs to
the class represented by the grammar.

However, noise and distortion complicate the computational
process of syntactic analysis: apart from distortions, spurious
primitives are generated, and real primitives cannot be detected.
Moreover, the very natures of the variable periods of symbols
codifying DSLS associated with variable lengths are challenges
for the syntactic analysis. Context dependencies and changes in
orientation angles, with segments of arbitrary length affect the
structure of the digital codes of the lines forcing the parser to
review its analysis [24].

The understanding of the problem from the syntactic point of view
involves the concepts of language, grammar and types of
grammars. According to Noam Chomsky, hierarchy dated of
1956, described in [17], languages are classified into four different
classes: Recursively Languages (or type 0), Context Sensitive
Languages (or Type 1), Context-Free Languages (or type 2) and
Regular Languages (or Type 3). There are degrees of complexity
related to the classes mentioned since class 3 type is a subset of
class Type 2, Type 2 class is a subset of a class type 1, class and
type 1 is a subset of Class 0.

Among the existing research approaches, syntactic methods are
usually considered unsuitable for tasks involving SLRD. The
reason is that SLRD requires powerful context-sensitive
grammars, making it impossible to apply simple formalism, such
as FSA [6] [14]. Recall that a regular language is specified by a
regular grammar. The concepts of regular language and FSA are
equivalent in a sense that for every regular language there is at
least one FSA that recognizes it and vice versa (see [17] about the
formalism of grammars, languages and automata).

34

The way the languages type 1 and 0 are accepted by the AFA is
given by [22]:

“In the literature, the classical model used for formal
acceptance of a language type and 1 and 0 is the Turing
machine. Context dependencies existing in these
languages can be solved by amendments of its own set
of states and transition rules by the AFA”[22].

In principle, the language type 0 would not be part of the scope of
this study. However, in order to comply with lengths of DSLS,
which can be in various scales, theoretically till infinity, this
research implies language type-0.

3.3 Codification
If nothing else is specified, without loss of generality, in this paper
neighborhood-4 is the default, so that the symbols of property
Prop1 must be consecutive, module four. More precisely, the
symbols that make up strings belong to ∑={a,b,c,d}. To satisfy
Prop1, just consider module 4 along with a=1, b=0, c=3, d=2, for
neighborhood-4 of Fig. 3 and Fig. 1.
Any string S=s1…sn, si � ∑ may be represented by its symbol,
followed by the indication of its i-th elemento si giving the
Expression 5:

�� ��� � � ���� � � � �� (5)

In Expression 5, n denotes the length of string S, which means
|S|=n. Symbols si � ∑ may be called tokens, chain code elements
or stimuli, too. The null string n = 0 is represented by . If all
symbols of S are identical, s=s1=s2=…=si=…=sn-1 =sn, a compact
representation is S=sn.

The following item presents a brief structural analysis of DSLS
through their string formats.

4. STRUCTURAL ANALYSIS
Another method of representing digital lines, applied in this topic,
is based on continued fractions, studied by [3]. This mathematical
approach provides appropriate models to evaluate errors and
approximations in the digitalization process. After the work of [3],
continued fractions have been researched, with several
developments, described in [14].

Initially, this item reviews the work by [18] evidencing that
depending on accuracy requirements, it is possible to derive
general formulas for the slope and mathematical models of DSLS.
These models are parametric, with parameters calculated in closed
form from the slope of DSLS in arbitrary directions on a lattice.

Without loss of generality, we consider chain codes representing a
continuous line of orientation angle !
with the positive axis x such
that ! � [0,π/4] (indicates that ! belongs to the closed interval
between 0 to π/4 radians) Hence, symbol a occurs alone while
symbol b is clustered in the corresponding strings codifying
DSLS.

In order to keep the slope of a digital line, the smallest segment of
a DSLS is called the Unit of the Straight Line Segment (USLS).

Supposing a DSLS codified by a string S with |S|=n. Therefore, S
is the concatenation of λ substrings, where n > λ and 1≤ i ≤ λ, as
each substring is a USLS U given by Expression 6.

�� "�
� � � ����� � #� (6)

In Expression 6, the null DSLS (λ = 0) is not defined. Besides, we
do not account yet that the first and last USLS (U1 and Uλ) may be
truncated.

4.1 Models
Taking in to consideration the slope SL as the tangent of an
Euclidean segment lying in the first octant, the models are given
by the continued fraction of Expression 7,

�$ � %
& � '

()

*)

+),

 (7)

where the positive and negative signs are chosen to accelerate the
convergence of the fraction and reducing the number of terms
(indicative of the order of the model). Additionally, A, B (B ≤ A),
and P are positive integers, while M,K,… are not negative integer.

Two principal models were proposed to describe the pattern
arrangement of DSLS symbols. The first was denominated first
order model because slope SL was a first-order continued fraction.
In the first-order model, the line segment traverses B rows and A
columns with the slope SL = B/A = 1/P; where P, the first-order
slope factor, is an integer. It means that A pixels of the line
segment are uniformly distributed in B rows with P = A/B pixels
in each row.

Hence, each row is a USLS which contains P consecutive pixels.
The row-by-row run length representation of the line segment is
PP···P, or PB where P = A/B.

For the first order model, strings �- of USLS are given by
Expression 8 and shown by Fig. 4.

�-� ./0�1 2 �� (8)

Figure 4 – First order model, characterized by P as a constant

integer.

In the second model, slope SL is a second order fraction SL =
B÷A = 1÷[P±(1/M)]; and P is the nearest integer of A / B : P =[A /
B]. This means that pixels are adjusted in each USLS by placing P
pixels in each of (M - 1) rows, with Q pixels in the remaining row
where Q can have only one of following two possibilities: Q =
(P+1) or Q = (P – 1). That is, the adjustment is made by
decreasing P of a unit, or by increasing P of a unit, as shown by
Prop4. The row-by-row run-length representation of the line
segment in the second order model can be expressed as
P…PQP…PQ shown in Fig. 1.

In the second order model, strings �- of each USLS may be of
two kinds:

�-� 3.
/0�

45�

./6'0�1 2 �
47
./8'0�1 2 � 9

35

In this second model, the main orientation angle, the one that
stands out in the distribution of local angles related to the USLS is
θS = arctan(1/P) with slope 1/P. However, USLS occur with
inclination 1/Q as spaced as possible. Thus, the orientation angle
! with the positive axis x of the continuous line that led to the
codification will be in the range ! � [arctan(1/(P+1)), arctan(1/P)]
(assuming Q = P+1) [13].

4.2 Proposal Summary

This proposal can be summarized in the use of a modified chord
property for models of higher orders (order n), thus incorporating
tolerances in angle and in length of DSLS. The modified chord
property changes neighborhood of Definition 3.1 into a variable
neighborhood function such as max{|x─h|,|y─k|}< n where n is
the order of the model that depends on the momentary situation
and the length of the segment, to sum up, of the stimuli. That is to
say, the neighborhood function of DSLS must have a relatively
large width, proportional to the measured length towards the
overall linear structure [19]. An outline of these higher order
models can be seen in Fig. 4 by altering P of the first order model
to be a variable integer, ranging theoretically till infinity:
 P(a,bm) : 0 ≤ m < ∞.

5. IMPLEMENTATION OF ADSLS
Regarding techniques for error recovery in this study, in order to
exhibit common characteristics to what is being alluded here with
other areas, it is often convenient to represent the real numbers in
a given circumference and not in a straight line, as usual.
Especially, from the circumference of unit length, when defining
an arbitrary origin point, one represents any point T by its
measured distance around the circle in a counterclockwise
direction (this by definition). The division of the circle can be
from the Farey series in the form of spyrographs described on
page 326 of [15].
The techniques of error recovery of syntactic analysis of DSLS
employ an approach similar to spyrographs in the form of
adaptive loops, such that, by these loops, the circumference is
built by states of the AFA, which moves cyclically and
continuously through the closed loop. In effect, adaptive loops
have their total number of states according to tolerance levels.

5.1 Starting and Final Structures of DSLS
In order to simplify the description of automata, take in to account
that the abbreviation HTST means a sequence head-to-toe of
transitions that consumes the same symbol; besides, each state
belonging to the sequence may identified by the first state
followed by respective sequential index. The extremes of a
hypothetic DSLS may be truncated or completely out of the global
structural model. In the former case, the sequence should be
accepted; in the latter rejected. Fig. 5 exposes an AFA which tests
the first USLS of a DSLS (a4b)n modeled from Expression 8.
Parameter r4 is the last state of the HTST starting in r. From this
arrangement, the AFA removes up to four null transitions by ADF
RA (see Table 2). Elucidating, each time RA is activated by token
a, it removes from the automaton one of the null transitions that
constitutes the HTST. Furthermore, any token b received conducts
the AFA to the final state; conditioned to if more than four tokens
a are received, the sequence is rejected. The analysis of the other
extreme is quite similar. Parameter xi and variables vr1, vr2, vr3

and vr4 permit general application of RA in different topologies,
as is going to be seen through this paper.

Figure 5 – AFA for testing the first USLS of a DSLS from (a4b)n

model.

Table 2 – Parametric ADF RA, of AFA of Fig. 5

RA(xi){vr1, vr2, vr3, vr4:
-[(xi-1,ε) → xi]
-[(xi, vr1) : vr2 → vr3 : vr4]
+[(xi-1, vr1) : vr2 → vr3 : vr4]
-[(r,a) → a : RA(xi)]
-[(r,a) → a : RA(xi-1)] }

5.2 Slope Errors of DSLS
This topic illustrates the recognition of DSLS subjected to slope
errors, exemplifying by USLSi = {a

nb : 3 ≤ n ≤ 5}.
Fig. 6 shows the initial configuration of the automaton prepared to
accept truncated USLS1 similar to the last item. ADF are
described in Table 3. With the first token b consumed, ADF B is
activated, which removes transitions of the initial configuration,
changing the automaton topology to that of Fig. 7.

Afterwards, the AFA starts to consume the succeeding USLSi :
i > 1 by each cycle u,u1,u2,u3,u4,u5,u in agreement with each
USLSi. ADF RB guarantees transitions to states u4,u5 will occur
after each USLSi processed, since RA removes transitions to these
states.

This process is repeated until the input stream is exhausted. A
token c is included just to signalize the end of the DSLS, when the
automaton reaches the final state if the process is successful. On
the other hand, if more than 5 tokens a are received, - [(xi, vr1) :
vr2 → vr3 : vr4] of RA removes transition of c to the final state,
rejecting the sequence.

Strings of Fig. 8 and Table 4 show the performance of the AFA.
These strings follows the model USLSi = {a

nb: 3 ≤ n ≤ 5},
truncating USLS1 in some strings, too. Strings out of this model
are rejected. Note that the AFA performance does not depend on
the length of the input DSLS.

Figure 6 – Initial Configuration for the automaton to detect a

DSLS considering slope errors

36

Figure 7 – Configuration of AFA of Fig. 6 after the activation of

ADF B

Table 3 – ADF of AFA of Fig. 6 and Fig. 7. ADF RA is in table 2

5.3 DSLS Length Similarity
A method to represent and apply tolerances is by a graph, or loop
exemplified in Fig. 9 such that the number of states of the loop
(that is, its size) is changed adaptively in function, for example, of

Figure 8 – Examples of DSLS produced by USLS = {anb : 3 ≤ n ≤

5}, accepted by AFA of Fig. 6 and Fig. 7

Table 4 – Strings of Fig. 8 (from left to right) accepted by AFA of
Fig. 6 and Fig. 7.

angle θS related to axis x; besides, θS gives the main direction of
DSLS S. Fig. 9 shows a loop containing to states, ranging from L1
to Lt0.

Figure 9 – A generic cyclic loop.

Considering that this graph is only for consultation by the
automaton, the specific symbol of the transitions between its
states becomes irrelevant. The reasoning with the method is that,
for each symbol belonging to the DSLS S such that |S| = n, the
automaton has to access the loop, advancing counterclockwise
through the cycle, circulating through the graph as many times as
the value of n.

Factor 0 < ψ < 1 is an error rate meaning a small percentage of n,
assuming a simple case in which the length is estimated by the
number of symbols in the neighborhood-4, given by Expression 4.
Since n is variable depending on lengths, the loop is adapted by
changing the amount of states to of Fig. 9, according to
Expression 9 and θS, the main angle of the DSLS, as well.

to ≈ [1/(1-ψ)]. (9)

For a given value of n, at each turn in the graph, the AFA pumps a
primitive thereby obtaining a syntactic measurement parameter
(1- ψ) relative to S. It follows that, in the end, n/to symbols would
have been pumped with the last symbol of S.

Therefore, [n/to] symbols can be excluded from the total n, to
correct the estimated length to lE. It is also possible to implement
inequalities in ADSLS by which to judge lengths of two
segments, |S1| = n and |S2| = m in a range of values of Expression
10.

n - [n/to] ≤ |S2| = m ≤ n +[n/to]. (10)

6. CASE STUDIES
These case studies center on the classification of basic geometric
shapes by ADSLS. Regardless of error causes from the previous
stages, i.e. segmentation algorithms that feed an input stream W
for classification, we are concerned with tiny errors, abstracted in
two broader issues in this item: angle errors of DSLS, and length
errors of DSLS. Necessarily, similarity is the essential question to
be considered.

Ironically, in shape classification, the most elementary is the
segmentation stage in performing attribute-extraction by the
selected primitives; not only more complexity is obligatory for the
classifier, but also higher computational power, too, and vice
versa [26]. Nevertheless, as already seen in item 3.1, modern
algorithms usually detect nearly DSLS, while guaranteeing
approximate straightness. Hence, the classification step could be
concentrated on detecting shape geometric properties affected by
existing length errors. In addition, the templates built adaptively
by the AFA of these case studies are simpler than the
implementation introduced in topic 5, with the advantage of

RB{:
-[(u4,ε)→u5]
-[(u3,ε)→u4]

+[(u4,ε)→u5]
+[(u3,ε)→u4] }

B{:
-[(r,a) → r : RA(ri)]
-[(r,ε) → r1]
-[(r1,ε) →r2]
-[(r2,ε) →r3]
-[(r3,ε) → r4]
+[(u,a) →u1]

 +[(u1,a) →u2]
 +[(u2,a) →u3]
 +[(u3,a) →u3 : RA (u5)]
 +[(u5, ε) →u4]
 +[(u4, ε) →u3]
 +[(u5,b) →u : RB]
 +[(u3,c) →LN] }

Strings of Fig. 8 Codification
1
2
3
4
5
6
7

a2b

a2ba3b

ba3b

a3ba3ba4ba3b

a3ba3ba4ba3ba3ba3ba4ba3b

a3ba3ba4ba3ba5ba4ba3ba4b

a3ba5ba3ba4ba3ba3ba4ba3ba5ba4b

37

exhibiting additional flexibilities. They resemble Fig. 10 for the
first-quadrant.

Figure 10 – A Simplified Model for Automaton Construction.

Example with 6 USLS.

As a consequence, once the segmentation stage accounts for
straightness, the AFA for classification would be simpler than the
implementations described earlier. Furthermore, it may be
convenient, in some systems, to have a simpler classifier at the
starting process, without regarding angle errors, to capture some
geometric properties quickly by the overall pattern arrangement of
USLS, refining the process lately, if necessary.

Next, in the first case study, an automaton that recognizes the
square is exemplified, irrespective of length errors.

6.1 ADSLS for Shape Classification
The ADSLS of Fig. 11 and Table 5 recognizes the square. It is an
extension of the one in Fig. 6 and 7 utilizing the same ADF RA.
An improvement is that each time an USLSi from the first side of
the square is consumed; ADF IB is activated, which constructs the
templates of the next 3 sides. These templates are built between
states s to t1: second side, w to w1: third side, p to p1: fourth side.
In conclusion, from Expression 6, an input stream W = S1S2S3S4,
concatenation of four DSLS S1,S2,S3,S4, can be accepted by the
ADSLS in case it codifies the square, such as #:
 �
#:�
� #:;
�
#:<. Experiments are in the next topic.

6.2 Shape Similarity: Slope Errors of DSLS
To demonstrate the effect of slope errors in classification, the
automaton of the last item was fed with strings W = S1S2S3S4
corresponding to Fig. 12-Left, Fig. 12-Right, Fig. 13-Left and
Fig.13-Right, varying the slope of individual DSLS.

Figure 11 – Initial Configuration of ADSLS that Recognizes the
Square without Length Errors

Albeit constituted of DSLS with variable slopes, the string of Fig.
12-Left was accepted by the ADSLS. The first side does not have
slope variations; still, combined slope variations from other sides
distort the square. Even though the ADSLS is capable of
capturing the global geometric property, it accepts the sequence
that could be rejected by a more local method. The string of Fig.
12-Right, was accepted. From the previous string, this one
introduces slope variations in the first shape side, so that total
combination of slope variation from all sides diminishes shape
distortions visually. The string of Fig. 13-Left was accepted
resulting in a shape with less distortion than those from Fig. 12. In
Fig. 13-Left, the first, third and fourth shape sides do not have
much slope variations. Slope variations from the third side are

difficult to visualize, yet not an ideal DSLS; conversely, the
square is visually easily identified. The string of Fig. 13-Right was
rejected because USLS (ba5) is out of the established range. USLS
(ba5) is easily identified visually in the overall formation.
Elementary changes in ADF, such as RA, would permit accepting
the sequence, adjusting the classifier if required by specifications;
otherwise segmentation algorithms should be more precise.

Table 5 – Adaptive Function IB of ADSLS of Fig. 11

IB{ti+1*,wi+1*,pi+1* :
-[(ti,ε)→w]
-[(wi, ε)→ p]
-[(pi,ε)→q]
+[(ti+1,b)→ ti+1]
+[(ti,c)→ ti+1]
+[(ti+1, ε)→ w]
+[(wi+1,b)→wi+1]
+[(wi,c)→ wi+1]
+[(wi+1, ε)→ p]
+[(pi+1,b)→ pi+1]
+[(pi,c)→ pi+1]
+[(pi+1, ε)→ q]}

6.3 Shape Similarity: Scaling
The ADSLS in Fig. 14 and Table 6, constructed by modifications
of previous ADF, recognizes the triangle fed by W = S1S2S3. The
triangles of Fig. 15 are in different scales, both accepted by the
automaton. The accepted triangle may be as big as possible;
however, the smallest one is limited to one USLS for each triangle
side.

Figure 12 – Strings W=S1S2S3S4. Left:[(ba
4)4b(cb3)(cb4)(cb3)

(cb4)c(dc3)4d(ad3)3(ad4)a]. Right: :[(ba3)(ba4)(ba3)(ba4)b

(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a].

Figure 13 – Strings W=S1S2S3S4. Left: string

[(ba3)4b(cb3)(cb4)(cb3) (cb4)4c(dc3)4d(ad3)4a]. Right: string

[(ba3)(ba5)(ba3)2b(cb3)(cb4)(cb3)(cb4)c(dc3)4d(ad3)4a].

6.4 Shape Similarity: Length error of DSLS
For the triangle, the existence of approximate shapes is informed
by W = = S1S2S3; where S1 is the pattern string, S2 and S3 are
observed strings to be compared by Expression 10 with S1 within
the tolerance informed by substring =; essentially = is string = =
>?@ composed by tokens y, given by the � of Expression 9. Any
symbol like y not belonging to ∑ could be used.

6.4.1 Implementation
Referring to the ADSLS of Fig. 16 showing the loop of Fig. 9 to
the right and 3 pointers, pa, pc, pd, it is convenient to clarify that
pointers are elementary null transitions; for instance, pointer pd is
pointing to w by the transition [(pd,) → w], called simply by its
fixed state pd. In case tolerance is informed to the ADSLS by
tokens y related to Expression 9, ADF RO consumes tokens y,
constructing the loop, introducing the 3 pointers, too. Transition

38

[(r1,a) → r1] is a simplification to consume possible starting
symbols a of USLS1. With first symbol b, the ADSLS begin to
consume subsequent USLSi. As already described, each time an
USLSi from the first side of the triangle is consumed, ADF IB and
RB are activated. Besides constructing the templates of the next 2
sides between states t1 to t2: second side, t3 to t4: third side, ADF
IB has now the new task to turn the loop by pointer pa.
Each time pa makes a complete turn through the loop, ADF IB
executes the following: i) include one new USLS in the loop
[(t2,b) → t2 : OT] and another in [(w,d) → w : OT]; ii) insert a

Table 6 – Adaptive Functions of ADSLS of Fig. 14

Figure 14 – Example of ADSLS for Triangle Classification

Figure 15 – Examples of triangles in different scales, classified

correctly by ADSLS of Fig. 14. Left: string

(a3b)6(c3b)(c4b)(c3b)4d12. Right: string (a3b)9(c3b)(c4b)(c3b)7d18

transition from the last state of each USLS included before: in the
first loop, one that consumes d to t3; in the second, a null
transition to TR; iii) moves pc to a state just one USLS below in
direction to t1, inserting one transition that consumes d from the
state pointed by pc to t3; iv) moves pd to point just one USLS
“below” in direction to t3, inserting one null transition from the
state pointed by pd to TR.

Nonetheless, in case ADF OT is activated, it just removes the
transition [(w,) →TR] to the final state, since the shape is too big,
out of tolerance, rejecting the input string. In the same way, too
mall shapes are rejected because the ADSLS cannot find either a d
transition to t3, or a null transition to final state TR.

6.4.2 Examples

Only two examples of DSLS length errors are provided, since any
shape meeting tolerance � is accepted, no matter its scale; other-
wise it is rejected. Shapes of Fig. 17 were accepted by the ADSLS

Figure 16 – Initial configuration of ADSLS for classifications of

the triangle affected by length errors

Figure 17 – Shapes classified correctly with 20% tolerance.

Left:(a3b)9(c3b)8d17. Right:(a3b)9(c3b)11d20

with � defining a length tolerance of 20%. Both shapes are easily
identified visually, though the shape to the right does not close,
splitting the contour because of length errors. On the contrary, the
one to the left presented a smaller contour than the ideal triangle,
leaving the USLS1 of first side out. This contour distortion
between the two shapes occurred because, first, the length of the
second side changed from 8 x USLSi to 11 x USLSi; second, the
length of third side changed from 17 x d into 20 x d.

6.5 Conclusion
Essentially, angle errors of DSLS have a local character, as
compared to length analysis, which is more global, with a greater
level of information regarding shapes. In effect, in case (relative)
straightness could be guaranteed by the segmentation algorithm,
then the classifier should geometrically evaluate the arrangement
of USLSi, globally. Thus, in this case, the classifier would be less
complex than if it had to perform straightness analyses.
As a consequence of little difficulty to change adaptive actions,
the classifier development is relatively simple, as altering the
behavior of the classifier to comply with segmentation algorithms
needs, too.
Hence, a non-stochastic and flexible application for Syntactic
Pattern Recognition based on FSA theory, associated with low
sophisticated shape descriptors become an option.

7. FINAL CONSIDERATIONS
To our knowledge, this is the first attempt to introduce AFA in
this subject, considering minute errors of DSLS. By traditional
techniques, the resulting automaton would have to be
implemented a priori, with high level of complexity to treat errors
that cause imprecise models or imprecise scale of DSLS. These
drawbacks have caused the lack of automaton-based solutions in
the literature; most results have grammar foundation [3]. An
alternative would be to apply fuzzy techniques, such as adaptive
fuzzy finite automaton. As reported by [1], models that rely on
hidden states are difficult for human experts to understand,
increasing complexity.

RB{:

-[(s2,ε)→s1]

-[(s1,ε)→s]

+[(s2,ε)→s1]

+[(s1,ε)→s]}

 IB {t3i+1*,t3i+2*, t3i+3*,wi+1*:
-[(ti,ε)→w]
-[(w3i,ε)→p]
+[(t3i,c)→ t3i+1]
+[(t3i+1,c)→ t3i+2]
+[(t3i+2,b)→ t3i+3]
+[(t3i+2, c)→ t3i+2]
+[(t3i+3, ε)→ w]

 +[(wi , d)→ wi+1]
 +[(wi+1, ε)→ q]}

39

Furthermore, computational power is another question involved.
In the opinion of [11] the capability of a more powerful class of
grammars should rejuvenate syntactic research originally pursued
in the 70s-80s. Our study showed some capabilities of adaptive
techniques related to digital geometry, enabling us to go a step
further; emphasizing that adaptivity may indeed contribute to this
rejuvenation of the field, as well.

As [24] says, it is considered very difficult to design a one-pass
algorithm for identification or generation of DSLS, yet noise-free.
As a starting-point, we have outlined a one-pass method by which
error tolerances are supplied by previous stages and provided to
the AFA. Models of DSLS strings were also presented associated
to the corresponding automaton. By such models, a priority for the
future is the study of inference algorithms, integrating similarities
of frequently repeating DSLS as another parameter of self
adaptation and learning by the automaton.

Case studies with basic applications demonstrated the simplicity
and efficiency of the method. Compared with other methods of
digital line representation, some important advantages of this
proposal are that their models are easy to understand, relatively
simple to program and flexible to accept changes in their
behavior, allowing the use of traditional syntactic tooling. The
expressive power of the model incorporates parameters of DSLS
such as angle, length and tolerances.

8. ACKNOWLEDGMENTS
Authors thank to Prof. João José Neto who has contributed
towards the development of this research.

9. REFERENCES
[1] Gonzalo Bailador and Gracián Triviño. Pattern recognition

using temporal fuzzy automata. Fuzzy Sets and Systems,
161(1):37 – 55, 2010. Special section: New Trends on
Pattern Recognition with Fuzzy Models.

[2] Partha Bhowmick and Bhargab B. Bhattacharya. Fast
polygonal approximation of digital curves using relaxed
straightness properties. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29:1590–1602, 2007.

[3] R. Brons. Linguistic methods for the description of a straight
line on a grid. Computer Graphics and Image Processing,
3(1):48 – 62, 1974.

[4] I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli.
Optimal blurred segments decomposition of noisy shapes in
linear time. Computers & Graphics, 30(1):30 – 36, 2006.

[5] Leo Dorst and Arnold W.M. Smeulders. Discrete straight
line segments: Parameters, primitives and properties. Vision
Geometry, series Contemporary Mathematics, American
Mathematical Society, vol.119:pp.45–62, 1991.

[6] J. Feder. Languages of encoded line patterns. Information
and Control, 13(3):230–244, 1968.

[7] F. Feschet. The lattice width and quasi-straightness in digital
spaces. In Proceedings of the..., Tampa, FL, 2008. INT.
CONFERENCE PATTERN RECOGNITION.

[8] C. Fiorio, D. Jamet, and J. L. Toutant. Discrete circles: an
arithmetical approach with non constant thickness. In
Electronic Imaging, editor, Proceedings of the..., Volume
6066, San Jose (CA), 2006. SPIE VISION GEOMETRY
XIV.

[9] H. Freeman. Boundary encoding and processing. Picture
Proceedings and Psychopictorics, pages 241–266, 1970.

[10] J. R. Garitagoitia, J. R. G. de Mendívil, J. Echanobe, J. J.
Astrain, and F. Fariña. Deformed fuzzy automata for
correcting imperfect strings of fuzzy symbols. IEEE
Transactions on Fuzzy Systems, 11(3):299–310, 2003.

[11] Zhu S.-C.b Han, F.a. Bottom-up/top-down image parsing
with attribute grammar. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(1):59–73, 2009.

[12] S.H.Y. Hung. On the straightness of digital arcs. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI- 7(2):203–215, 1985.

[13] Nahum Kiryati and Olaf Kübler. Chain code probabilities
and optimal length estimators for digitized three-dimensional
curves. Pattern Recognition, 28(3):361–372, 1995.

[14] R. A. Klette and A. B. Rosenfeld. Digital straightness – a
review. Discrete Applied Mathematics, 139(1-3):197–230,
2004.

[15] Reinhard Klette and Azriel Rosenfeld. Digital geometry:
geometric methods for digital picture analysis. Morgan
Kaufmann, 2004.

[16] H. C. Lee and K. S. Fu. Using the FFT to determine digital
straight line chain codes. Computer Graphics and Image
Processing, 18(4):359–368, 1982.

[17] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory
of Computation. Prentice-Hall, 1981.

[18] Shu-Xiang Li and Murray H. Loew. Analysis and modeling
of digitized straight-line segments. In Proceedings of the...,
pages 294–296, Rome, Italy, 1988. PROCEEDINGS OF
INTERNATIONAL CONFERENCE ON PATTERN
RECOGNITION.

[19] Peter F.M. Nacken. Metric for line segments. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15(12):1312–1318, 1993.

[20] João José Neto. Adaptive rule-driven devices - general
formulation and case study. In Springer-Verlag, editor,
Proceedings of the..., volume 2494, pages 234–250, Pretoria,
South Africa, July 2001. IMPLEMENTATION AND
APPLICATION OF AUTOMATA 6TH INTERNATIONAL
CONFERENCE, CIAA 2001.

[21] J. P. Reveillès. Géométrie discrète, calcul en nombres entiers
et algorithmique. PhD thesis, Université Louis Pasteur,
Strasbourg, 1991.

[22] R. L. A. Rocha and J. J. Neto. Autômato adaptativo, limites e
complexidade em comparação com máquina de Turing. In
Faculdade SENAC de Ciências Exatas e Tecnologia, editor,
Proceedings of the..., page 33 a 48. PROCEEDINGS OF
THE SECOND CONGRESS OF LOGIC APPLIED TO
TECHNOLOGY, 2001.

[23] Azriel Rosenfeld. Digital straight line segments. IEEE
Transactions on Computers, C-23(12):1264–1269, 1974.

[24] S. Shlien. Segmentation of digital curves using linguistic
techniques. Computer Vision, Graphics and Image
Processing, 22(2):277–286, 1983.

[25] N.A. Visnevski, F. Dilkes, S. Haykin, and V. Krishna
murthy. Non-self-embedding context-free grammars for
multi-function radar modeling-electronic warfare application.
In Proceedings of the... IEEE INTERNATIONAL RADAR
CONFERENCE, IEEE, 2005.

[26] Kai Ching You and King-Sun Fu. A syntactic approach to
shape recognition using attributed grammars. IEEE
transactions os systems, man, and cybernetics, 9(6):334–345,
June 1979.

