
4º Workshop de Tecnologia Adaptativa – WTA’2010 44

Abstract— We describe an expert system that is currently in

development and has as a goal automatic knowledge acquisition
from documents written in plain English. The envisioned system
will be able to answer simple questions based solely on information
it has acquired unaided by any human operator. By reading
articles in PDF format or web pages, such as Wikipedia, the system
will be able to increase its knowledge base, providing the users with
better answers. Currently the system works only with texts in
English. We make use of the Stanford Parser to help in the natural
language interpretation. To store knowledge a representation
structure similar to a semantic network was developed. It offers a
few advantages which will be described in greater detail.

Keywords— Expert systems, knowledge representation,
automatic knowledge acquisition.

I. INTRODUCTION

he current revolution promoted by information technology
offers anyone with internet access a large, and constantly

growing, amount of information. However, in order to gain
access to this information, certain tools are needed. Currently
search engines like Google, Yahoo! and Bing are essential to
find information on the web. These tools return a list of links
to pages or documents on the Internet containing data that
might be related to the query entered by the user (a set of
keywords). The list of links is processed by a non-intelligent
algorithm and the user is forced to navigate among the many
links returned in order to find the desired information.

This method is important and has been very successful.
However, it has expressive limitations. Although such systems
can point to sources which have a high probability of
containing the answers to a question, it cannot directly answer
the question. This has motivated the development of systems
capable of directly answering a users question via the web,
such as Google Squared (1) and Wolfram Alpha (2). These
projects try to automate the information extraction from the
existing sources, formatting and filtering the requested
information. They are also capable of dynamically generating
results for a query based on the acquired knowledge. We
consider the next step in this evolution to be the construction
of knowledge servers (3); systems that are able of extract,
store and provide information in an intelligent manner. The
development of such a system is the goal of this project.

II. OBJECTIVES

We aim to develop a system, dubbed Cube, which is able to
automatically extract knowledge from different sources, like
PDF documents and web sites. The system will use natural

This project has been supported by FAPESP and CNPq.

language processing to extracted knowledge from these
sources. It must also be able to store this knowledge in a
manner that allows for querying. The system will also be able
to generate answer to user submitted queries from the stored
knowledge.

III. METHODOLOGY

In order to create our knowledge base we must be able to
process the source text and extract knowledge from it. An
input module that realizes this task was developed. Two
important parts of this module are further described below.

A. Natural Language Processing

The input texts are written in plain English. A natural
language processor is therefore essential to obtain the
semantics of a sentence. To aid in this task, we made use of
the Stanford Parser (4). This parser is written in Java and it is
statistical, using a probabilistic context free grammar (PCFG).

Our software extracts sentences from the source text and
inputs them in the Stanford Parser. The parser returns a tree
that represents the grammatical relationships between the
words in the sentence. This structure is then parsed by an
automaton we developed to generate a graph that represents
the knowledge contained in the sentence.

B. Knowledge Representation

There are several well known ways to represent knowledge,
such as frames, the entity-attribute-value model and semantic
networks. The entity-attribute-value model was discarded
because it isn´t efficient at storing knowledge in a generic
manner and generating knowledge through inference.

Frames (5) are based on the entity-attribute value model,
but are able to represent knowledge in a more structured way.
Frames are stereotyped situations that are previously defined,
based on frequently experienced situations, which may be
changed to define a new situation. A frame is a sort of network
where the top levels represent knowledge about what is always
true about a given situation and what could be expected from
such a situation. There are also terminals which can be filled
in to better describe the situation. Kicking a ball can be a
situation. Scoring a goal can be an expected result from such
an action. The size and type of the ball are terminals that help
better describe the situation. However creating the frames to
represent any kind of situation that a general knowledge
acquisition system might encounter is difficult, so we
discarded this structure as well.

The semantic network (6) was the approach implemented
here. A semantic network is a graph composed by vertices that
represent concepts and edges, that may or may not be directed,
which represent relationships between these nodes. An

Cube – A Knowledge Extraction System (November 30, 2009)

F. S. Komori, F.B. Colombo and M. N. P. Carreño

T

4º Workshop de Tecnologia Adaptativa – WTA’2010 45

example of a semantic network is pictured below.

Fig. 1. A semantic network collected from 4 sentences and representing
knowledge about two types of birds and how they travel.

Semantic networks provide a simple way to organize
knowledge and they also allow inference. Knowledge that may
not have been explicitly input into the system may be derived
from this representation. If we ask how a canary travels, there
is no direct answer. However, we can see from the network
that a canary is a bird. If we ask how a bird travels, there is an
answer: a bird travels by flying. This mechanism allows us to
infer new knowledge from the network: a canary travels by
flying.

We should also note that the edge travels by connected to
the Penguin vertex is necessary because otherwise we would
incorrectly answer the question “How does a penguin travel?”.
If we were to infer the answer in the same manner as we did
for the canary, the system would answer that the penguin
travels by flying, which we know to be false. This is called
exception handling.

We found that a semantic network was the best suited
structure to our system. However even this structure had a few
shortcomings. We therefore modified the structure to better fit
our needs.

C. Extended Semantic Network

The extended semantic network (ESN) is created from a
common semantic network (SN). This modified structure
allows us to represent any sentence, and therefore any
knowledge that may be expressed by these sentences. An ESN
has five types of vertices: entity, relationship, complement,
entity modifier and relationship modifier.

An entity vertex represents the same concept that a vertex
in a SN represents. The relationships represented by the edges
of a SN are equivalent to the relationship vertices of the ESN.

The complement vertex is used to represent any type of
complement that may be expressed in English. The
complement vertex allows a simple and more elegant way to
represent certain rules or limitations. For example, sometimes
we have different relationships to model similar sentences, as
in “The color of the sky is blue” and “The color of the sky is
blue only on sunny days”. A SN does not have a simple way
to represent this type of exception. An ESN can represent both
these sentences in a similar manner because the complement
vertex is capable of adding more information about the main
phrase.

The entity modifier vertex groups different entity vertices
into a new vertex that represents a single more complex entity.

Take the sentence “Robert’s house is very pretty”. Both
“Robert” and “house” are entities for which more information
could be available. It is therefore desirable to store them as
such. However “Robert’s house” is also an entity. An entity
modifier vertex is able to represent this complex entity formed
by two simpler entities. In a similar way, a relationship
modifier will be linked to relationship vertices. Considering
this, the diagram in Fig.2 represents an ESN created by our
software for the same SN in Fig.1.

Fig. 2. An ESN representation of the same SN shown in Fig. 1. The vertex
colors are: blue for entity, red for relationship, green for complement and
yellow for modifiers (both entity and relationship)

Knowledge may also be inferred from an ESN in a manner

similar to inference in a SN. The “is a” relationship edge in a
SN is replaced by a “is” relationship vertex in an ESN. It is
possible to infer how a canary travels by noting that a directed
edge from the entity modifier vertex joining “the” and
“canary” to an “is” relationship vertex exists. Once again,
following the directed edge leaving the “is” vertex one arrives
at a entity modifier vertex joining “a” and “bird”. Therefore a
canary is a bird. Applying a similar logic one determines how
a canary travels.

An ESN can be defined through an extended semantic
network grammar (ESNG), which is described by the
following Wirth notation (7):

4º Workshop de Tecnologia Adaptativa – WTA’2010 46

esn = “{“ extent extrel “}” | “{“ extent extrel extent “}” .

exter = extrel | extent .

extrel = genrel { “[“ “compl” exter “]” } .

extent = genent { “[“ “compl” exter “]” } .

genrel = “rel” | “(“ relset “)” “rel” .

relset = “rel” { “rel” } .

genent = “ent” | “(“ entset “)” “ent” .

entset = “ent” { “ent” } .

ent = “acorn” | “bird” | “cat” | “dog” | …

rel = “is” | “travels” | “lives” | …

compl = “as” | “by” | “and” | “of” | “in” | …

D. In this notation, “ent” represents an entity; “rel”, a
relationship and “compl”, a complement. The “entset” and
“relset” productions correspond to sets of entities and
relationships, respectively. The “genent” and “genrel”
productions represent an entity or a modified one, with the
modified entity and the set of modifiers entities. The “extrel”
and “extent” productions allow the insertion of complement
phrases. Finally, the esn represents an English sentence, given
the previous productions.

E. Based on the ESGN, it is possible to represent English
sentences using a new representation that can be obtained
from an ESN. For instance, the sentences in Fig. 2 can be
defined using the ESNG as: {(the) penguin is (a) bird}, {(the)
canary is (a) bird}, {bird travels [by flying]} and {penguin
travels [by walking]}. As we can see, the ESNG allows a
simple representation of English sentences, adding useful
information about the semantics, like the presence of noun
modifiers (with the round brackets), complementary phrases
(with the square brackets) and sentence boundary (with the
curly brackets).

 Taking a longer sentence, for instance, “The electron
was identified as a particle in 1897 by J. J. Thomson and his
team of British physicists”, we have the ESN shown in Fig.3:

Fig. 3. An ESN representation of a longer sentence.

 The corresponding ESNG representation of the ESN
in Fig.3 is: {(The) electron (was) identified [as (a) particle [in
1897]] [by (J. J. Thomson) [and (his) team [of (British)
physicists]]]}.

F. Architecture

The system is divided in two main modules: an input
module (the Writer module) which is responsible for
populating the database with knowledge gained by examining
input sources; and an output module (the Reader module)
which accesses the database in order to answer queries made
by the user.
 The general flow of the Writer module is outlined in
the flowchart below.

4º Workshop de Tecnologia Adaptativa – WTA’2010 47

Fig. 4. Flowchart representing the Writer module of the Cube system.

The first component of the Writer module is the Loader. It
loads the input texts, independently of the source types. This
component isolates the source type from the system which, in
turn, allows for different text sources to be processed in a
similar way. This modular approach also simplifies the task of
creating further functionalities to load data from other sources.
Currently we are able to load text from PDF files and from
HTML documents, so any web site may be processed. A
special processor exclusively for Wikipedia was also
developed. It includes the capability of processing links,
treating the corresponding sites in a recursive manner. The
depth to which this recursion is carried out can be controlled
by the user.

The next three components (lexical, syntactic and semantic
analyzers) have the usual functions. The lexical analyzer takes
the text and splits it into tokens, which in our case represent
words. This part is relatively simple and can be implemented
using regular expressions. The syntactic analyzer transforms
the tokens received from the lexical analyzer into a syntactic
tree. A syntactic tree is a tree that represents the text in a
sentence in a grammatically structured form. The words are
characterized as being nouns, adjectives, etc. and are arranged
on the tree based on their order in the sentence. Currently the
Stanford Parser is being used to generate the syntactic tree.

The semantic analyzer converts the syntactic tree into the
extended semantic network. To accomplish this goal, it uses
the Stanford typed dependencies (8) generated by the parser.
This functionality is implemented partly by the Stanford

Parser and partly by a newly developed component in our
software.

The last part of the Writer component is the Persistence
module. It basically stores the ESN generated by the previous
component in the knowledge base. Currently we use Hibernate
(9) to store the ESN in a relational data base. Care must be
taken when saving data to the database since the ESN
generated for a given sentence must be joined with the
existing database. It is important that when this is done, the
vertices are not replicated in the database. In other words,
there should only be one entity node for “canary”, “penguin”
and so on.

The Reader module allows the user to query the database.
Currently the querying algorithms are relatively simple. We
have not yet implemented algorithms for inferring knowledge
from the ESN. However the system is already able to answer
some simple queries. We have developed two user interfaces.
One is in the form of a Java application that can be used to
input information into the system as well as to query the
database and obtain the answers and check the ESN in the
database. The other is a web interface that allows querying and
returns formatted answers. Fig.5 shows the Reader module
components.

Fig. 5. A flowchart representing the Reader module.

The first Reader module component is the Researcher. This
component receives the query provided by the user and then
searches for sentences that contain the specified words. Since
the ESNs contain data about the complete sentence, which
consists of a unique identification for each sentence, we can
return pieces of the stored ESN that contain only the desired
sentences. Having found the sentences, this component
reassembles the ESN in memory, creating the corresponding
edge-vertices structure of the ESN.

The next component in the Reader module is the Formatter.
This component recognizes knowledge in the sentences
returned by the Researcher. For instance, imagine a user
queries the word “electron”. If the database contains an entity
"electron" that is related to a composed entity "subatomic
particle" through a relationship node that contains "is", as in
Fig. 6, then the Formatter creates a Definition format,
retrieving the term ("electron") and the definition ("subatomic
particle") from the sentence. The resulting text, created to be
displayed as a web page, is shown in Fig. 7.

4º Workshop de Tecnologia Adaptativa –

Fig. 6. ESN retrieved from the database for the query “electron”.

Fig. 7. The web result of a query for “electron”.

A Property format was also developed. Take an ESN that
contains an entity "color" connected to another entity "sky" by
the complement "of" and to another entity "blue" by the
relationship "is". This type of relation
property: the main entity is "sky", which has a property
"color" with value "blue". The Property format is returned as
shown in Fig.8.

Fig. 8. The web result of a query for “sky”.

The Formatter component is extensible and, therefore, other
processing components can be incorporated in the system,
amplifying its capabilities of finding knowledge from the
ESN.

 WTA’2010

. ESN retrieved from the database for the query “electron”.

A Property format was also developed. Take an ESN that
contains an entity "color" connected to another entity "sky" by
the complement "of" and to another entity "blue" by the
relationship "is". This type of relationship describes a
property: the main entity is "sky", which has a property

The Property format is returned as

ible and, therefore, other
processing components can be incorporated in the system,
amplifying its capabilities of finding knowledge from the

G. Cube as an application of adaptivity theory

The Cube project has some aspects related with adaptivity
theory (10). Its main component, the knowledge base, is a rule
set. This rule set has a definition expressed by the Extended
Semantic Network Grammar (ESNG). The system updates the
ESN according to the sentences that it acquires from different
possible sources, like PDF documents, web sites and so on.
The updating process is not trivial and it has some details that
require attention. First, entities can’t be duplicated in the
database. There must be a verification to merge a newly
created ESN with the database ESN
must substitute pronouns and other indeterminations, because
their presence in the knowledge base has no meaning. Finally,
the system must take into account possible conflicts try to
resolve them through modifications to the ESN. Th
requisites are not implemented yet on the current version of
the program, but they are planned for future work.

The search and formatting process are based on the
knowledge base. It is essentially a common application of
adaptivity: when the system tries to retrieve some knowledge
from the base, this process is done considering a structure that
is modified dynamically, through a loading process from text
documents. Beyond this, for the syntactic analyzer, we built a
dynamic parser generator, that creates a parser (SLR or LR(1))
in execution time, given a grammar. This component permits
updates on the grammar in execution time, without the need of
recompiling the code in order to generate a new parser. This
implementation is another application
project.

However, developing this piece of software is not part of
our current project, which is why we are using the Stanford
Parser. In order to create our own complete solution with our
own syntactic parser, however, a dynamic pa
will be useful.

IV. R

In order to test our system we loaded the Wikipedia web
page for the entry “electron”, using the previously described
writer module. After the site has been processed, the database
was updated with the sentences from
the term “electron” using our web interface, we obtain the
results shown in Fig. 9.

48

Cube as an application of adaptivity theory

The Cube project has some aspects related with adaptivity
. Its main component, the knowledge base, is a rule

set. This rule set has a definition expressed by the Extended
Semantic Network Grammar (ESNG). The system updates the
ESN according to the sentences that it acquires from different

ike PDF documents, web sites and so on.
The updating process is not trivial and it has some details that
require attention. First, entities can’t be duplicated in the
database. There must be a verification to merge a newly
created ESN with the database ESN. Second, the algorithm
must substitute pronouns and other indeterminations, because
their presence in the knowledge base has no meaning. Finally,
the system must take into account possible conflicts try to
resolve them through modifications to the ESN. These last two
requisites are not implemented yet on the current version of
the program, but they are planned for future work.

The search and formatting process are based on the
knowledge base. It is essentially a common application of

system tries to retrieve some knowledge
from the base, this process is done considering a structure that
is modified dynamically, through a loading process from text
documents. Beyond this, for the syntactic analyzer, we built a

hat creates a parser (SLR or LR(1))
in execution time, given a grammar. This component permits
updates on the grammar in execution time, without the need of
recompiling the code in order to generate a new parser. This
implementation is another application of adaptativity in this

However, developing this piece of software is not part of
our current project, which is why we are using the Stanford
Parser. In order to create our own complete solution with our
own syntactic parser, however, a dynamic parser generator

RESULTS

In order to test our system we loaded the Wikipedia web
page for the entry “electron”, using the previously described
writer module. After the site has been processed, the database
was updated with the sentences from that page. Searching for
the term “electron” using our web interface, we obtain the

4º Workshop de Tecnologia Adaptativa – WTA’2010 49

Fig. 9. Returned result for a query “electron” in a database loaded with all
the information in Wikipedia web page for the entry “electron”.

As can be seen, the system is capable of finding more than
one definition for the word “electron”. This occurs because the
Formatter component analyzes all the sentences returned by
the Researcher and verifies, for each of them, if it matches the
expected format for a definition.

The process of reassembling the sentence is not yet
completed and, therefore, some errors are present (the last
definition in Fig.9 is an example). The conversion from an
ESN to plain English is not trivial and it must follow English
grammar rules. It is important to note that several of the
observed mistakes are not caused by our system but are due to
incorrect parsing of some sentences by the parser.

Although the Reader module is simple, it provides good
results. The mechanisms to extract knowledge are very simple
and currently lead to limited results. The describe Definition
format is an example. Since not all occurrences of the verb
“is” are used to define something, the system sometimes
yields incorrect definitions. We believe however, that with
little more logic this concept could yield to correct results in a
more consistent manner.

The processing time to parse input data is still a bit high.
For example, it takes a few minutes to process a Wikipedia
page. This is mostly spent parsing the input data via the
Stanford Parser.

V. CONCLUSIONS

As was shown, the Cube system is still simple and in

development. However it is already able to automatically
extract knowledge from HTML and PDF documents. In order
to store this knowledge, we developed a new semantic
representation, the Extended Semantic Network (ESN). The
ESN exhibits great flexibility and is capable of representing
complex sentences written in English. The ESN has a small set
of node types (entity, relationship, modifier, complement) but
it is applicable to almost all the sentences in English, because
of its generic concepts.

The entire system was intended to be as modular as
possible, since this is very important for further development
and adding new functionality. For example, adopting a new
input source or a different parser, like the Link Grammar
Parser (11), is relatively easy. We hope that by implementing
the various features mentioned throughout this article and few
others the Cube system will become even more useful. This
means to generating better and faster results and incorporating
new capabilities to provide more information and analyses. As
part of our future work, we are studying the introduction of a
timeline processing component (based on historical
information and object hierarchy) and the addition of
capabilities to process and interpret other languages, in special
Portuguese.

REFERENCES

1. Google. Google Squared. [Online] [Cited: August 10, 2009.]

http://www.google.com/squared.
2. Wolfram Alpha. [Online] [Cited: August 10, 2009.]

http://www.wolframalpha.com.
3. Feigenbaum, Edward. The Age of Intelligent Machines: Knowledge

Processing - From File Servers to Knowledge Servers. [Online] [Cited:
November 30, 2009.]
http://www.kurzweilai.net/meme/frame.html?main=/articles/art0098.html

4. Stanford. Stanford Parser. [Online] [Cited: September 21, 2009.]
http://nlp.stanford.edu/software/lex-parser.shtml.

5. Minsky, Marvin. FRAMES. [Online] MIT, June 1974. [Cited: November
27, 2009.] http://web.media.mit.edu/~minsky/papers/Frames/frames.html.

6. Sowa, John F. Semantic Networks. s.l. : John Wiley and Sons, Inc., 1987.
7. Wikipedia. Wirth Syntax Notation. [Online] [Cited: November 30, 2009]
 http://en.wikipedia.org/wiki/Wirth_syntax_notation
8. Manning, Marie-Catherine de Marneffe and Christopher D. The

Stanford typed dependencies representation. COLING Workshop on Cross-
framework and Cross-domain Parser Evaluation. 2008.

9. Hibernate. Hibernate. [Online] [Cited: September 28, 2009.]
https://www.hibernate.org/.

10. Neto, J. J. Adaptatividade e tecnologia adaptativa. Revista IEEE América
Latina. 7, 2007, Vol. 5. (Special Edition – of Worshop de Tecnologia
Adaptativa, WTA’2007)

11. University, Carnegie Mellon. Link Grammar Parser. [Online] [Cited:
Novermber 30, 2009.] http://www.link.cs.cmu.edu/link/.

