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Abstract 

Biodiversity conservation is a world challenge that needs attention and efficient strategies for its success. Modeling of geographic 
distributions of species is used in assorted applications related to biodiversity conservation. Maximum entropy (maxent) is a 
technique recently applied to modeling of geographic distributions of species and is being largely used by biologists. The aim is 
to evaluate different viewpoints of this technique. The first evaluation is concerned with the performance of the algorithm. A 
parallel version of the maxent-based algorithm available in openModeller is presented. openModeller is a set of tools provided 
for researchers interested in modeling of geographic distributions of species. The second evaluation is focused on tuning the 
regularization parameter, since it can severely affect the performance of the algorithm and can take a long time to be adjusted. In 
addition, the algorithm was evaluated without the use of a regularization parameter and with an adaptive maximum entropy 
approach. This approach was evaluated as a replacement of the regularization parameter. The validation of the assessments was 
based on a dataset with 20 species. The results show: an improvement in the algorithm performance using parallelism, 
considering only the running time; the regularization parameter does not depend on the number of samples, or on the number of 
iterations in training; species with the same number of samples fit better with different values of the regularization parameter 
(different magnitude order); the adaptive approach cannot replace the regularization parameter. 
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1. Introduction 

Biodiversity conservation is a challenge with various world impacts. The term biodiversity refers not only to the 
diversity of the biological world, as the word suggests, but it also refers to the complex interactions among the 
different forms of life and the ecological functions performed by them. Thus, biodiversity conservation includes the 
preservation of all species in the world, not only of an individual species. 

Modeling of geographic distributions of species has been used in assorted applications related to biodiversity 
conservation. For example, it has been applied in monitoring the spatio-temporal variation in habitat suitability of 
species [1], impacts of climate change [2], and study of species delimitation [3]. 

There are many techniques that have been used to model environmental systems [4]. Maximum entropy (maxent) 
[5] is a technique recently applied to the modeling of geographic distributions of species and is being largely used 
by biologists. The results of some evaluations concerned with different viewpoints of this technique are presented 
herein. 

The performance of a technique in modeling of geographic distributions of species depends on the number of 
data and mainly how it was implemented. Some techniques demand a long running time, requiring some hours or 
even days to finish the modeling. The first evaluation of maxent, presented here, concerns the performance of the 
algorithm. A parallel version of the maxent-based algorithm, available in openModeller [6], which is a set of tools 
provided for researchers interested in modeling of geographic distributions of species, is presented. This algorithm 
improves the running time without efficiency loss. 

Modeling techniques require the tuning of parameters to be used as default values. This is important because to 
tune parameters can take a long time and default values are always validated with a large number of experiments. In 
maxent, the regularization parameter prevents overfitting, that is, the model loses the ability of generalizing beyond 
the fitting data. This behavior can severely affect the performance of the algorithm. Thus, the second evaluation is 
focused on tuning the regularization parameter. Two other evaluations were made of the regularization parameter: 
its removal of the algorithm and the possibility of replacing it by another strategy, the adaptive approach of maxent 
[7]. The adaptive approach tries to find the best set of features at each step instead of using the same data all along 
the training. 

2. Basic Concepts 

This section presents some basic concepts needed for the complete understanding of the work presented here. 
This is a multidisciplinary work, including niche-based modeling, maximum entropy, parallelism and adaptive 
technology. 

2.1. Modeling of geographic distributions of species – an overview 

The main concept related to modeling of geographic distributions of species is the ecological niche [8]. It 
represents the set of resources and ecological conditions essential for species to sustain a population for a long 
period of time. A modeling tool produces an approximation of the ecological niche of a species known as niche-
based model. Before beginning the modeling, the problem should be delineated, that is, queries that the model 
should answer. 

Fig. 1 shows the general modeling process. The set of data is selected based on the delineation of the problem. 
The selected set of data should be treated, that is, possible errors such as wrong digitization and unreasonable values 
should be cleaned up. The model performance depends on the data quality. After the selection and treatment of data, 
an algorithm should be chosen and it is required to set its parameters. A reasonable understanding of the algorithm 
and its parameters is recommended. Executing the chosen algorithm generates a model. Generally, the modeling 
tools offer some statistics that allows the post analysis of the model. The last step is the validation of the model. At 
this level, the model can be accepted or one may decide to return to any of the previous level. There are more details 
about the modeling process in Santana et al.[9] . 
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Fig. 1. General modeling process. 

The model generated is a probability function that represents the relation between the suitable environmental 
conditions for the species and the given environmental/ecological data [5]. The selected data are occurrence points 
and environmental layers. Occurrence data are georeferenced points – latitude and longitude – recorded where the 
species were observed. They can be divided into presence and absence points, indicating the existence or not of the 
species. Environmental layers represent the ecological niche of the species [10], that is, the environmental 
conditions needed for the survival of the species. Some environmental layers commonly used in modeling are 
temperature and precipitation. They are also georeferenced data and all of them must belong to the same study 
region [5]. After the model generation, it is applied to a geographic region of interest, resulting in a georeferenced 
map that contains the occurrence probabilities of the species. 

2.2. Modeling of geographic distributions of species – an overview 

The increasing amount of occurrence data of species available in databases over the Internet [11] stimulates the 
efforts towards studies of tools to deal with them. However, presence data are plentiful and absence data are rarely 
available. Thus, the use of presence-only modeling methods which require just presence data, such as maxent [5,11], 
is very important. 

According to Phillips et al. [5], in a maxent method, the resulting model is not an occurrence probability function 
of the species, but a probability distribution, that is, the problem is to estimate the distribution with maximum 
entropy. Suppose X is a finite set of pixels over the geographic study area. The points x1,...,xm in X represent the 
occurrence points of a species. The goal is to estimate the probability distribution p* over X that approximates p, the 
probability distribution that represents the true distribution of the species. 

A set of real-valued functions f1,...,fn, where fj: X → , known as features, represents the environmental layers or 
functions derived from them. The notation p[fj] denotes the expectation of the feature fj under the probability 

distribution p. The expectation is for each feature to be equal to its empirical average, denoted by 
][~

jfp
 and 

defined by Eq. (1) [12]. 
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Commonly, there are many probability distributions satisfying such constraints, but the maximum entropy 
principle suggests that, among all of them, the chosen probability distribution is that with maximum entropy. The 
entropy of a probability distribution p on X [12] is defined as  
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The probability distribution with maximum entropy, defined in Eq. (3) can be proved to be equivalent to Gibbs 

distribution, that is, an exponential distribution with a vector of feature weights that parameterizes it [13]. This 
probability distribution is defined as 
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where λ is a vector of the feature weights, with real values, and Z λ is a normalizing constant that guarantees that the 
probability distribution sums to one over the area of interest. The probability distribution with maximum entropy is 
also equivalent to minimizing the log loss, that is, the negative log likelihood [5,12,13]. The log loss is defined in Eq. 
(4). Thus, both Eq. (3) and Eq. (4) are used as objective functions. 

)log(][~ Zfp jj             (4) 

The work presented here was performed in openModeller, a framework for modeling of geographic distributions 
of species with a lot of resources [6]. The maxent algorithm available in openModeller is alike to the sequential 
algorithm used in MaxEnt program [5,12]. Unlike most algorithms, the sequential one chooses one weight at a time 
to update them. This procedure is executed until either the convergence is reached or a specific number of rounds 
are performed. 

The expectation for each feature to be equal to its empirical average may cause overfitting. This is because the 
empirical average generally just approximates the true mean. Regularization parameter is used in maxent to avoid 
this problem [5]. Thus, instead of the expectation for each feature to be equal to its empirical average, the 
expectation is for it to be close to them. The use of regularization replaces Eq. (4) with Eq. (5) 

||)log(][~ jjjj Zfp            (5) 
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where βj is an estimate of how close the empirical average is from the true mean. 

3. Methodology 

According to Phillips and Dudík [13], the best choice of the regularization parameter depends on the class of 
features and the number of occurrence records. However, the best value for βj is still under study and it may 
interfere severely in the performance of the algorithm. Besides that, it can take a long time to be adjusted. Therefore, 
an evaluation of different values for βj with several species is presented herein. The values for βj were ranged from 
0.00001 to 0.9 considering just the variation of the first number different from zero in each magnitude order. 

The removal of regularization was also evaluated for the same set of species and an alternative technique, known 
as adaptive approach, was considered for replacing regularization. The adaptive maxent approach [7] searches for a 
new set of environmental layers at each round, changing the data set used in the training during the algorithm 
running. 

The modeling process uses a massive number of data and the algorithm processing may consume a lot of time. 
Besides this, some algorithms are considered very computationally expensive. Consequently, the project in which 
the openModeller tool was inserted bought a cluster. Therefore, the more algorithms are parallelized, the more 
efficient the tool can be. This was one of the motivations for the parallelization of the maxent algorithm available in 
openModeller. The parallel version of the maxent algorithm presented here was developed using the MPI library 
(Message Passing Interface). 

 The master-slave approach presented in Fig. 2 was carried out in the development of this work. In this approach, 
the master process distributes the tasks for slave processes and after the processing it receives the result from each of 
them. The strategy adopted was the dynamic scheduling of the tasks. In the dynamic scheduling, the distribution of 
processes to the processors is carried out during the program running in agreement with some standard. The measure 
used in this work was the on-demand scheduling, that is, when a slave process finishes the execution of a task, the 
master process attributes a new task to this slave process. This procedure occurs until all the tasks are concluded. 

 

Fig. 2. Master-slave model applied in the implementation of the parallel version of maxent – extracted from [14] 

The parallelization was carried out in the minimization of the Eq. (4). The master process is responsible for 
determining the layer j that each slave process will calculate in Eq. (4). Each slave process returns to the master 
process the (j, α) values, in which α is the value for updating the weight of this layer. When the master process 
receives a result, it verifies if the α value is the smallest. The master process distributes the tasks to the slave 
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processes and receives the processed result from each of them. If the number of layers in a given experiment is 
greater than the number of processes, when the master process receives a result, it sends a new job to the slave 
process from which it received the result. This procedure is repeated until all the tasks have been finished. 

4. Data Processing  

Occurrence data of two species were used to validate the parallel algorithm and 18 species to evaluate the 
regularization parameter. The species used in the experiments of parallelization validation were Byrsonima 
intermedia and Xylopia aromatica. The first one is a shrub of the Malpighiaceae family. It is popularly known as 
small-murici and is a native medicinal species of the Brazilian cerrado. The second one is a small tree of the 
Annonaceae family. It is popularly known as malagueto and is found in the Brazilian cerrado. It is commonly used 
for firewood. These two species are derived from SinBiota – environmental information system for the program 
Biota/Fapespb. The experiments were carried out with 38 records of Byrsonima intermedia species and 33 records of 
Xylopia aromatica species. These species were chosen because they had been used in other experiments in 
openModeller. 

A dataset with species of Krameria genus was used for evaluating the regularization parameter. The Krameria 
(Krameriaceae) genus presents 18 species with geographical distribution encompassing the Neotropical region. 
There are two peculiar characteristics of this genus: 1) the Krameria species presents a hemi parasitic habit – their 
leaves are green and able to carry their own photosynthesis but they need hosts (other non-specific plants) to grow; 2) 
their flowers present special glands that produce floral oil – this oil attracts specialized bees (Centris, Apidae) that 
pollinate the flowers [15,16]. The North American Krameria species occur in deserts in Mexico and in USA, and the 
South American ones occur in seasonally dry regions (mainly in the Brazilian cerrado and caatinga) and at high 
altitudes near the Andes [16]. The species diversity center is located in Mexico and presents eleven species; the 
secondary one is located in Brazil (5 species) [16]. 

The occurrence points of 18 Krameria species were obtained at biodiversity portals of the Internet, mainly in the 
Global Biodiversity Information Facilityc, Southwest Environmental Information Networkd, Comisión Nacional 
para el Conocimiento y uso de la Biodiversidade and speciesLinkf. The papers by Simpson [16] and by Simpson et 
al. [17] were also used. The geographical coordinates obtained were checked, converted and corrected, whenever 
necessary, using the available tools of speciesLink website. The final database used presented 2748 occurrence 
points. Fig. 3 shows the Krameria occurrence points. 

Since the occurrence points of the species used in the validation of the algorithm parallelization were from the 
Brazilian cerrado, the models were generated for the São Paulo state, Brazil. Thus the environmental layers were 
from the same region with spatial resolution of 30 arc-second provided by WorldClim – Global Climate Data [18]. 
The layers used were annual mean temperature, mean diurnal range, maximum temperature of the warmest month, 
minimum temperature of the coldest month, annual precipitation, precipitation of the wettest month and 
precipitation of the driest month, totaling 7 layers. 

For the experiments with Krameria, 37 environmental layers were used including the American continent with 
spatial resolution of 5 arc-min. The layers used were maximum temperature for twelve months, minimum 
temperature for twelve months, precipitation for twelve months and altitude. WorldClim also provided these layers. 

The sequential and the parallel version of maxent were run with the aim of comparing the performance regarding 
the running time between them. Two measurements were carried out: the total running time of the application and 
the running time of the algorithm to estimate the maxent parameters. Both running were carried out in the 
openModeller project cluster. The cluster is a SGI Altix XE 1300 system composed by an input node Altix XE 210 

 

a http://sinbiota.cria.org.br/  
b http://www.gbif.org/ 
c http://seinet.asu.edu/ 
d http://www.conabio.gob.mx/ 
e http://splink.cria.org.br/ 



996 Elisângela S. da C. RODRIGUES et al. / Procedia Environmental Sciences 2 (2010) 990–1001

 

with two Xeon quad Core processors of 2.00GHz, 8 GB of RAM, hard disk of 500 GB, 24-port InfiniBand switch, 
24-port Gigabit ethernet switch, SGI Propack 5, SUSE Linux 10, and 10 Altix XE 310 nodes, each one with two 
Xeon quad Core processors of 2.00GHz, 8 GB of RAM and hard disk of 250 GB, totaling 80 cores. The total 
running time of the application was measured with timeg command available in Linux. The running time of the 
algorithm to estimate the maxent parameters was measured through code instrumentation. 

The sequential version of the algorithm was run 10 times for each species and the values considered were the 
averages of the two times measured. In the parallel version of the algorithm, the number of processes varied from 3 
to 8. The number of processes was upper limited according to the number of layers, thus one process run as master 
and seven processes run as slaves, one for each layer. In the parallel version, for each species, 10 models were 
generated for each number of processes and the averages were considered. 

 

Fig. 3. Krameria occurrence points. 

The experiments with regularization parameter were carried out in a computer with Core 2 Duo Intel processor of 
1.66 GHz and 2 GB of RAM. The Operational System used in this architecture was Ubuntu 8.04, a Linux 
distribution. Since the aim of this part of the work was to evaluate the influence of the regularization parameter 

 

f http://www.ncsa.uiuc.edu/~gbauer/time.1.html 



 Elisângela S. da C. RODRIGUES et al. / Procedia Environmental Sciences 2 (2010) 990–1001 997

 

choice over the models, the measures collected were model accuracy, AUC (Area Under the ROC curve) and 
number of iterations. 

5. Results and Discussion 

5.1. Parallelization 

In the sequential version run, the total running time average of the application was 11.18 seconds for modeling 
the Xylopia aromatica species and 11.17 seconds for modeling the Byrsonima intermedia species. The running time 
of the algorithm to estimate the maxent parameters was 5.03 for modeling the first species and 5.02 for the second 
one. Fig. 4 shows the parallel version running time for modeling the Xylopia aromatica and Byrsonima intermedia 
species. The greater columns represent the total running time of the application and the smaller columns represent 
the running time of the algorithm to estimate the maxent parameters. 

 

 
Fig. 4. Running time of the parallel maxent algorithm with different number of processes for Xylopia aromatica and Byrsonima intermedia 
species. 

 

The best running times were achieved when the algorithm ran using 3 processes, in both modeling. For Xylopia 
aromatica, the best times were 5.03 and 11.18 seconds and, for Byrsonima intermedia, the best times were 5.02 and 
11.17 seconds. The increase in the number of processes did not decrease the running time. Conversely, the running 
time increased as the number of processes was extended, although the time variation had been very small. 

It is important to point out that even though the running time had increased when the number of processes was 
extended, there was a considerable performance gain of the parallel version with respect to the sequential version. 
The performance gain in modeling Xylopia aromatica species was almost 40% for the estimating parameters 
algorithm and approximately 18% for the entire application. The performance gain in modeling Byrsonima 
intermedia species was about 37% for the estimating parameters algorithm and approximately 17% for the entire 
application. 

Analyzing the results obtained, it is possible to observe that the parallelized procedure had a significant 
contribution to the performance improvement in the estimating parameters algorithm. However, the performance 
gain for the entire application did not occur in the same proportion, indicating that other procedures must also be 
parallelized for the best exploitation of the openModeller project cluster. 

5.2. Regularization Parameter 

Table 1 shows the best results attained in the experiments carried out for tuning the regularization parameter. The 
first and the second columns contain the name and the number of samples of each species. The third column has the 
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best value of the regularization parameter for each species considering the collected statistics. The other columns 
have the best value of each measure considered in the evaluation of the regularization parameter. The choice of the 
best value for regularization parameter was based on the best values of accuracy, AUC and number of iterations, 
respectively. The Lappacea species was discarded from the data set because its AUC was less than 0.75 and just the 
values above 0.75 are considered useful [13,19]. 

Table 1. Best results of regularization parameter. 

Species Number of samples Regularization 
Parameter 

Accuracy (%) AUC Number of 
iterations 

Paucifolia 4 0.07 100 1.0 3752 

Bahiana 14 0.9 100 0.88 1036 

Cistoidea 19 0.05 100 1.0 9632 

Sonorae 19 0.9 100 0.94 1250 

Spartioides 27 0.9 100 0.93 1369 

Grandiflora 35 0.9 100 0.89 1408 

Argentea 45 1.0 100 0.93 1362 

Ramosissima 66 0.9 100 0.98 1357 

Secundiflora 66 1.0 100 0.91 1257 

Revoluta 77 1.0 89.61 0.95 1804 

Pauciflora 80 1.0 86.25 0.80 392 

Cytisoides 134 1.0 97.01 0.93 684 

Ixine 162 1.0 79.01 0.97 1816 

Tomentosa 163 0.07 68.71 0.95 5542 

Lanceolata 465 0.7 96.56 0.96 1614 

Grayi 511 0.9 89.04 0.98 1863 

Erecta 755 1.0 86.49 0.97 1978 

 
The results shown in Table 1 indicate that the regularization parameter does not depend on the number of 

samples or on the number of iterations in training. Moreover, species with the same number of samples or with a 
number of samples close to each other, fit better with different values of the regularization parameter (different in 
magnitude order), such as Cistoidea and Sonorae, Ixine and Tomentosa. This behavior reinforces the difficulty in 
tuning this parameter. As an alternative, this parameter was removed from the algorithm and an adaptive approach 
was considered for their replacement. The best results are presented in Table 2. 

Table 2. Maxent without regularization parameter and with an adaptive approach. 
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Species 
Maxent without regularization Adaptive approach 

Accuracy (%) AUC Iterations Accuracy (%) AUC Iterations 

Paucifolia 100 1.0 9007 100 1.0 5421 

Bahiana 78.57 0.97 2588 78.57 0.97 2410 

Cistoidea 94.74 1.0 10000 94.74 1.0 10000 

Sonorae 68.42 0.99 4290 68.42 0.99 3208 

Spartioides 62.96 0.97 1262 66.67 0.97 1408 

Grandiflora 54.29 0.94 3628 57.14 0.95 3341 

Argentea 37.78 0.94 200 37.78 0.94 213 

Ramosissima 96.97 0.99 1762 96.97 0.99 1854 

Secundiflora 27.66 0.74 49 27.66 0.74 54 

Revoluta 55.84 0.95 377 63.64 0.96 446 

Pauciflora 0.00 0.43 17 0.00 0.45 18 

Cytisoides 0.75 0.59 23 0.75 0.56 26 

Ixine 59.26 0.97 484 59.26 0.97 502 

Tomentosa 54.60 0.95 4055 57.67 0.94 4042 

Lanceolata 86.88 0.95 903 87.96 0.96 972 

Grayi 74.17 0.98 3155 74.17 0.98 2738 

Erecta 62.12 0.97 904 61.46 0.97 896 
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The results presented in Table 2 show that removing the regularization parameter causes a decline in the 
measurements. The adaptive approach presented almost the same results as the algorithm without regularization 
parameter. Therefore, it cannot replace the regularization parameter. Fig. 5 shows an example of a generated model. 
Hot colors represent more suitable environmental conditions for the species. 

 

6. Conclusion 

The aim was to evaluate different aspects of the maximum entropy algorithm for modeling of geographic 
distributions of species. The first evaluation was to compare the performance regarding running time of a parallel 
maxent algorithm and its sequential version available in openModeller. The MPI library was used to implement the 
parallelism proposed. Some experiments were carried out with occurrence data of two species. For both data sets, 
the parallel version achieved a significant performance gain in relation to the sequential version, about 40% for one 
species and 37% for the other. These results motivate the research and development of high-performance methods 
for modeling of geographic distribution of species. 

The second evaluation was about tuning the regularization parameter. The results show that there is no relation 
between regularization parameter and the number of samples, or with the number of iterations in the training process. 
Moreover, species with the same or a similar number of samples fit better with different values of the regularization 
parameter (different magnitude order). The adaptive approach could not replace the regularization parameter 
because it causes a decline in statistics, that is, worse models. 

 

Fig. 5. Best model for Tomentosa species. 

The algorithm to estimate the maxent parameters available in openModeller is based on the sequential algorithm 
used in the MaxEnt program. Therefore, one of the future works suggested is to research and develop another 
parallel version from an algorithm that updates all parameters at each step. Hence, the modeling of geographic 
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distribution of species with maxent would benefit more from the parallel programming methodology. Another 
promising future work is the selection of a larger data set to study the behavior of the regularization parameter. 
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