
 

  
Abstract— This paper presents an Adaptive Maximum 

Entropy (AME) approach for modeling biological species. The 
Maximum Entropy algorithm (MaxEnt) is one of the most used 
methods in modeling biological species geographical distribution. 
The approach presented here is an alternative to the classical 
algorithm. Instead of using the same set features in the training, 
the AME approach tries to insert or to remove a single feature at 
each iteration. The aim is to reach the convergence faster without 
affect the performance of the generated models. The preliminary 
experiments were well performed. They showed an increasing on 
performance both in accuracy and in execution time. 
Comparisons with other algorithms are beyond the scope of this 
paper. Some important researches are proposed as future works. 
 

Keywords— Adaptive systems, Biological system modeling, 
Maximum Entropy methods. 

I.   INTRODUCTION 

DAPTIVE systems has been largely developed as 
solution of dynamic problems. The adaptive technology 
is an increasing research field and it can be employed in 

several areas. For example, recognition of shapes [1], 
evaluation of generated automatons by genetic algorithms [2], 
string matching [3] and others. This paper presents an 
adaptive approach for a Maximum Entropy (MaxEnt) 
algorithm in modeling of biological species geographical 
distribution. 
 The lack of environmental conservation has been affecting 
the entire world and, consequently, the biodiversity 
destruction is growing fastly. Several environmental problems 
need attention and efficient strategies for its solution. The 
modeling of biological species geographical distribution can 
assist decision-making processes, planning and accomplishing 
actions aiming at environmental conservation. Since Brazil is 
the country with the richest flora and fauna on Earth, about 
one sixth of the total, the motivation and support to researches 
directed to natural resources management and sustainable 
development are very important. 

Artificial Intelligence (AI) techniques have large potential 
to solve complex problems of inference because they try to 

                                                           
E. S. C. Rodrigues, Universidade de São Paulo, São Paulo, Brasil, 

elisangela.rodrigues@poli.usp.br 
F. A. Rodrigues, Universidade de São Paulo, São Paulo, Brasil, 

fabricio.rodrigues@poli.usp.br 
R. L. A. Rocha, Universidade de São Paulo, São Paulo, Brasil, 

luis.rocha@poli.usp.br 
P. L. P Corrêa, Universidade de São Paulo, São Paulo, Brasil, 

pedro.correa@poli.usp.br 
 

simulate some human characteristics, such as reasoning and  
 
learning. For these reason, there are several AI techniques that 
are being used for modeling environmental systems such as: 
(a) Case-Based Reasoning applied to forest fire management, 
air quality prediction of urban areas, reduction of 
environmental impact caused by chemical process and cyclone 
forecasting [4]-[7]; (b) the Rule-Based Systems can be 
employed in the diagnostic of pests and diseases [8], [9]; (c) 
Artificial Neural Networks can be applied to water resources 
management, water quality prediction, ozone concentrations 
prediction and modeling of biological species geographical 
distribution [10]-[14]; (d) Genetic Algorithms are a very 
known and used technique in modeling biological species 
geographical distribution [15], but it can also be applied in 
predictions of air quality, water quality models calibration and 
water management in irrigated agriculture [16]-[18]; (e) 
Cellular Automata can be applied to species migration 
modeling, landscape modeling and modeling of seismic 
activity [19]-[21]; (f) Fuzzy systems can be employed in water 
management, soil erosion prediction and forest fire risk 
estimation [22]-[24]; (g) Multi-Agents Systems has been 
applied in natural resource management and forest 
management [25], [26]. Other techniques such as Swarm 
Intelligence, Reinforcement Learning and hybrid systems have 
also been used in environmental systems modeling. In [27] 
there is an overview about these AI techniques with additional 
references. 

The MaxEnt is one of the most used algorithms by 
researchers of biological species modeling. It is the main 
motivation for the research about how the adaptive technology 
can improve the performance of this algorithm. 

There are some free tools available for modeling biological 
species geographical distribution and several algorithms with 
different approaches were already implemented for this aim. 
The openModeller is a framework for modeling biological 
species geographical distribution with several resources [28]. 
One of the algorithms available in openModeller is a MaxEnt 
algorithm. Thus, the AME approach was implemented from 
the version available at openModeller and incorporated to it. 

The MaxEnt algorithm implemented in openModeller 
chooses a feature from a set at each iteration and updates its 
parameters. This choice is based on a minimization function 
with all features. Thus, features influence the algorithm 
performance, that is, inserting or removing features can 
improve the parameters fitting and convergence can be 
reached faster. However, in the algorithm implemented in 
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openModeller, the set of features used along the learning 
process is static. The approach proposed here inserts features 
in the set or removes features from it along the learning 
algorithm. Adaptive Devices were used here to represent this 
dynamic characteristic. Adaptive Devices can modify their 
own structure without external interferences. The only 
algorithm available in openModeller tool that has an adaptive 
version is GARP [29]. 

An Adaptive Maximum Entropy (AME) approach for 
modeling biological species geographical distribution is 
presented, which aims to reduce the amount of features used 
in the construction of models. The AME approach was based 
on the developed MaxEnt algorithm available in 
openModeller. The proposed approach uses an ambitious 
strategy because it tries to find out a set of features that seems 
to be the best at each iteration instead of using the same set of 
features all along the model learning.  

Section II presents the main idea of adaptive devices. 
Section III describes the modeling process of biological 
species geographical distribution as well as the openModeller 
tool. Section IV describes the Maximum Entropy Principle 
and its application to modeling biological species. Section V 
presents the Adaptive Maximum Entropy approach. The 
methodology used in the experiments is presented in Section 
VI, as well as the results obtained. Final discussion and 
proposals for future works are presented in Section VII. 

II.   ADAPTIVE DEVICES 

Adaptivity is the capacity that a system has to modify its 
own structure without external interferences [30]. Adaptive 
Devices are abstract descriptions of problems that have 
dynamic behavior. These descriptions are associated with non-
adaptive subjacent devices that represent problems with static 
behavior [31].  

Non-adaptive devices have their behavior defined by a 
static set of rules. A non-adaptive subjacent device is 
improved by the addition of a set of adaptive actions. These 
actions characterize the operations needed for making the 
system behavior adaptive [30]. 

Any system that has its behavior defined by a set of rules 
and that has dynamic behavior can use adaptive devices as its 
abstract description. There are several adaptive formalisms 
that can be used as descriptions, such as adaptive automata 
[32], [33], [34], grammars, state charts, Markov chain, 
decision tables and decision trees [30]. 

Adaptive actions allow alterations in the set of rules that 
defines the system. There are three elementary actions in 
adaptive devices: searching, erasing and inserting [35]. 
Searching actions try to find a rule according to some pattern. 
These actions do not modify the set of rules. Erasing actions 
remove from the set of rules all rules matching a given 
pattern. Inserting actions add rules with a given pattern in the 
set of rules. Adaptive actions can be executed before or after 
the application of the underlying non-adaptive rule that they 
are associated. 

In AME approach proposed here, the underlying device is 

the structure of the method. The adaptive actions will modify 
the number of environmental variables used along the learning 
process. 

III.   MODELING BIOLOGICAL SPECIES 

The amount of available data about biological species is 
increasing and it is becoming largely disseminated in the 
World Wide Web. In [36] there are several websites addresses 
that supply data on species distribution. Modeling tools can 
process these data, for example, and the results can generate a 
lot of information to assist environmental conservation 
planning. 

The set of ecological conditions necessary for a species to 
keep populations is known as species ecological niche [37]. 
This is the main concept related to modeling of biological 
species geographical distribution. The fundamental ecological 
niche is the set of all conditions that allow the survival of 
species for a long period of time. A niche-based model, 
produced by a modeling tool, is an approximation of the 
species fundamental ecological niche. 

A modeling tool uses two kinds of data to produce a niche-
based model: occurrence data and environmental data. The 
occurrence data are georeferenced points – latitude and 
longitude – recorded where the species were observed. These 
occurrence records are also called presence points. The 
species occurrences are determined by the environmental 
conditions in the region where it occurs. Sometimes, there are 
records of the species absence, indicating its inexistence in a 
given region. However, absence data are rarely available [38]. 
Environmental data are also known as environmental layers 
and they represent the species ecological niche [39]. All 
environmental layers should be in the same geographic area 
and they are georeferenced, too [38]. Some examples of 
environmental layers commonly used in modeling are 
temperature and precipitation. 

The main purpose of a modeling tool is to find a 
probability function that represents the relation between the 
suitable environmental conditions for the species and the 
given environmental layers [38]. Some modeling tools are 
freely available on the web, such as DesktopGarp [40], 
MaxEnt [41] and openModeller [42], in which this work is 
inserted. In these tools, several algorithms have been applied 
to modeling biological species, such as GARP (Genetic 
Algorithm for Rule-set Production) [15], [43], Maximum 
Entropy [38], [44], SVMs (Support Vector Machines) [45], 
Neural Networks [14], and others [46]. 

A.   openModeller 
The openModeller is a framework developed to support all 

the modeling process. It offers several functionalities, such as 
search and preparation of data, pre-analysis modules, 
modeling algorithms and visualization of results [28]. 
OpenModeller is an open source tool, written in C++, which 
runs in different platforms and provides several modeling 
algorithms [42]. 

Each algorithm in the openModeller tool has specific input 
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parameters that can be changed by users. Although a little 
knowledge about these parameters is desirable, all algorithms 
have default input parameters that were widely tested. The 
input data are the same for all algorithms: an occurrence data 
set and an environmental data set. It allows the user to make 
different experiments with a variety of algorithms but with the 
same data, making the result analysis and the comparison 
among them easier. 

Fig. 1 shows the modeling process used by openModeller. 
The niche points are environmental layer values at each 
georeferenced point where the species were recorded. Thus, 
the occurrence points are transformed into points in the 
environmental space. The algorithm receives the niche points 
as input data and, after processing, gives a probability 
function that maps the environmental suitability for the 
species to a domain in the environmental layers space. The 
probability function given as output by the algorithm 
represents a niche-based model. The model generated is 
projected in a geographical area, producing a georeferenced 
map with the probability function of the species. All areas in 
the map satisfying the environmental conditions of its 
fundamental niche represent the potential distribution of a 
species. 

In a modeling with the openModeller tool, the user must 
specify the input occurrence data, the input environmental 
layers set and the algorithm(s) that will be used. The 
occurrence data must be in a file containing the record 
identifier, the species name, the coordinates (longitude and 
latitude) where the species was observed and the abundance, 
that assume value 1 when the record is a presence point and 0 
when the record is an absence point. Each georeferenced point 
must be in a new line and a tab separates the fields. Each 
environmental layer in a GIS format (standardized 
codification of geographical information) must be stored in a 
different file. 

Besides that, the user must choose the modeling algorithm 
and set its parameters or keep the default one. There are 
several help appliances and ways to use XML configuration 
files [42]. One of the most used algorithms in the 
environmental modeling community is the Maximum 
Entropy-based one. This was one of the motivations for the 
study of a new approach of a MaxEnt method. Another 
motivation for the development of this work was that both 
Adaptive Devices and MaxEnt methods tend to be largely 
applied to modeling and AI problems. 

 
 

 
Figure 1. Modeling Process used in openModeller (adapted from [39]).

IV.   MAXIMUM ENTROPY PRINCIPLE 

The Maximum Entropy principle originates from statistical 
mechanics [47], [48] and has been successfully applied in 

several research areas, such as Natural Language Processing 
[49] and modeling of biological species geographical 
distribution [38], [44]. However, it is possible to produce 
better results and to find solutions using Adaptive Devices.  
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The main idea of the MaxEnt principle is: from a 
probability distribution set that satisfies some constraints, to 
find the one that has maximum entropy. This principle can be 
considered a constrained optimization problem, that is, the aim 
is to find a solution maximizing or minimizing a function. 

Entropy (1) is a very important concept in Information 
Theory. It measures the amount of uncertainty associated to 
the possible states of an event. The amount of information of 
an event is inversely proportional to its probability of 
occurrence. The entropy is defined as [38] 
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where p is the probability distribution over the set of possible 
states of an event, N is the total number of possible states of 
the event and pk is the occurrence probability of the k-th state. 

A.   Maximum Entropy to Modeling of Species Distribution 
The main advantage of applying Maximum Entropy to 

modeling of biological species geographical distribution in 
comparison with other methods is that it needs just presence 
data, besides the environmental layers. Furthermore, it is 
possible to use both categorical and continuous layers [38]. 

In modeling biological species geographical distribution, 
suppose that the finite set of pixels representing the area of 
interest is X. The set of points x1,...,xm pertaining to X 
represents the presence points of a species. The aim is to find 
a probability distribution p* that approximates p, the potential 
distribution of the species. 

The environmental layers are treated as features, that is, a 
set of functions f1,...,fn, so that fj: X → Ρ. These features can 
also be functions derived from the environmental layers, such 
as the square of a continuous environmental layer or a product 
of two continuous environmental layers. Thus, each feature 
sets a real value fj(x) to each point in X. The constraints are 
that the expectations of each feature matches its empirical 
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The MaxEnt probability distribution can be proved to be 
equivalent to the Gibbs distribution, that is, an exponential 
distribution with a vector of feature weights that parameterizes 
it [50]. This probability distribution is defined as 
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where λ is a vector of the feature weights, with real values, 
and Zλ is a normalizing constant that guarantees that the 
probability distribution sums to one over the area of interest. 
The MaxEnt probability distribution is also equivalent to 
minimize the log loss, that is the negative log likelihood [38], 
[44], [50]. The log loss is 

)log(][~
λλ Zfp jj +⋅−          (4) 

Thus, both Gibbs distribution and log loss are used as 

objective functions. 

B.   Maximum Entropy in the openModeller 
There are several algorithms to estimate the Maximum 

Entropy parameters, such as Generalized Iterative Scaling, 
Improved Iterative Scaling and limited memory variable 
metric [51]. The estimating algorithm available in the 
openModeller tool is similar to the sequential algorithm used 
in the MaxEnt program [38], [44]. It was proved to converge 
to Maximum Entropy probability distribution in [52]. 

This algorithm is called sequential because it chooses one 
feature at each iteration and adjusts its parameters. This 
procedure is executed until either the convergence is reached 
or the number of iterations is reached. This estimating method 
was implemented in openModeller because it has shown to be 
suitable for modeling biological species geographical 
distribution [38], [44]. However, there is a similar estimating 
algorithm that updates all feature weights at each iteration 
[52]. Fig. 2 shows the high-level algorithm to estimate the 
Maximum Entropy parameters implemented in openModeller. 
The update consider 
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and, in the second for, j is the feature’s label that will be 
updated and j′ is the current label. 

The algorithm has four input parameters: number of 
iterations, number of background pixels and convergence. The 
default values of each parameter defined empirically are: 
number of iterations = 500, number of background pixels = 
10000 and convergence = 10-5. Background pixels are 
georeferenced points that are used to delimit the area of study, 
but these points are not interpreted as pseudo-absences, as in 
other techniques [38]. Currently, only the linear feature is 
implemented, that is, the raw environmental layer values. 

V.   ADAPTIVE MAXIMUM ENTROPY APPROACH 

The underlying device used here is the structure of the 
method presented in Fig. 2. The adaptive actions do not 
change the program code but they change the method 

structure. 
Figure 2. High-level algorithm to estimate MaxEnt parameters (adapted from 

Input: feature functions f1,…,fn 

   occurrence points x1,…,xm 

Output: vector of feature weights, λ. 
1. for j = 1 to n 

λj = 1; 
2. for k = 1, 2, … 

a. Let (j, δ) = arg ),(
min

δj Fj(λk, j, δ), where  

Fj(λk, j, δ) is the log loss (4) and 
δ is the expression in (5); 

b. if ( j = j′ ) 
λk+1, j′  = λk+1, j + δ ; 

     else 
     λk+1, j′  = λk+1, j′ ; 
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[52]). 
 

Fig. 3 presents the general view of the training procedure. 
This procedure can be applied to any maximum entropy 
algorithm because the changes occur in the number of features 
used at each iteration. 

 
 
 
 
 
 
 
 

Figure 3. General view of the training procedure. 

 
The algorithm begins with all features chosen by the user 

and all feature weights are set to 1. Instead of just choosing 
the best feature to adjust its parameters, the adaptive approach 
searches for the best set of features based on the log loss of 
each possible set. 

Fig. 4 shows how the procedure chooses the best set of 
features at each iteration. For all possible subset of features, Fj 
is calculated and the minimum value is chosen to update the 
respective parameter. At each moment of time, there is a set of 
feature weights that produces a probability distribution. The 
log loss of every subset of features is calculated and the subset 
with the smallest value is chosen to be the new set of features. 
This procedure is repeated until the convergence or the 
number of iterations is reached. Thus, the features can be 
inserted or removed from the set according to the log loss. 
This variable set of features characterizes the dynamic 
behavior of the task, which tries to find the probability 
distribution with maximum entropy as soon as possible.

Figure 4. Adaptive Maximum Entropy approach.

VI.   EXPERIMENTAL METHODOLOGY AND RESULTS 

A.   Occurrence Data 
Occurrence data of two species were used for tests here: 

Byrsonima intermedia and Xylopia aromatica. The first one is 
a shrub of the family Malpighiaceae. It is popular known as 
small-murici and is a native medicinal species of Brazilian 
Cerrado. The second one is a small tree of the family 
Annonaceae. It is popular known as malagueto and is found in 
Brazilian Cerrado. It is commonly used for firewood. 

The occurrence data are derived from SinBiota – 
environmental information system for the program 
Biota/Fapesp [53]. The tests were carried out with 38 records 
of Byrsonima intermedia species and 33 records of Xylopia 
aromatica species. These species were chosen because they 

had been used in other experiments in openModeller. 

B.   Environmental  Data 
A biologist suggested the environmental layers. The 

models were generated for the Sao Paulo state, Brazil. Thus 
the environmental layers were from the same region with 
spatial resolution of 30 arc-second (approximately 1 km2) 
provided by WorldClim – Global Climate Data [54]. The 
layers used were annual mean temperature, mean diurnal 
range, maximum temperature of warmest month, minimum 
temperature of coldest month, annual precipitation, 
precipitation of wettest month and precipitation of driest 
month, totaling 7 layers. 

C.   Experiments 
The aim of the experiments was to validate the AME 
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approach. All experiments were carried out in a computer with 
Core 2 Duo Intel processor of 1.66 GHz and 2 GB of RAM. 
The Operational System used in this architecture was Ubuntu 
7.04, a Linux distribution. In all experiments, the time 
command available in Linux was used. This command was 
used aiming to evaluate the impact of the AME approach in 
the openModeller performance. 

The time command measures the execution time of the 
application, the time spent by the system functions during the 
application execution, the total time from the beginning until 
the end of the execution, the CPU percentage that the 
application got (application time + system time/total time), 
number of files read and written by the process and the 
number of page faults during the process execution. There are 
other output options that can be activated through the 
command line [55]. Here, only the total time of the application 
execution was considered. 

Besides the execution time, the accuracy of all the models 
generated was considered to evaluate if the AME approach 
had a better performance than the classical algorithm. Both 
AME and the classical algorithms were run 5 times for each 
species and the considered values were the average of the 
recorded values. 

D.   Results 
AME approach spent 9.47 seconds in average for Xylopia 

aromatica species and 9.57 seconds in average for Byrsonima 
intermedia species, whereas the classical approach spent 
14.25 seconds for the first species and 14.38 seconds for the 
second one. 

The model average accuracy was 45.45% with the AME 
approach for Xylopia aromatica species and 56.31% for 
Byrsonima intermedia species. The classical approach 
generated models with 42.42% of accuracy in average for the 
first species and 33.68% for the second one. 

The difference between the results of each run was 
insignificant. It is because the Maximum Entropy algorithm is 
deterministic. Thus, it is not necessary to run the algorithm 
more than once. However, the algorithms were run 5 times for 
each species because a different set of background pixels is 
generated at each run. This different set of background pixels 
can generate small differences in the algorithm’s statistics. 

Since the AME approach tests all possible combinations of 
features for choosing the best one, it is an algorithm 
computationally expensive. Its complexity is exponential 
because as the number of features increase, the number of 
combinations grows exponentially. However, AME approach 
searches for the best combination at each iteration, removing 
or inserting features. Therefore, AME approach reaches the 
convergence faster than classical approach. That is why it ran 
faster than the classical one. 

A significant reduction in the execution total time of the 
AME approach can be observed, approximately 33.5% faster 
than the classical algorithm, in average. The accuracy was 
about 6.7% better with AME approach for Xylopia aromatica 
species than the classical algorithm. However, the accuracy 

for Byrsonima intermedia species with AME approach was 
40.19% better than the classical one. These results indicate 
that the proposed strategy showed to be adequate for modeling 
species geographical distribution. 

Fig. 5 and Fig. 6 show a distribution model for the Xylopia 
aromatica and Byrsonima intermedia species, respectively, 
generated by the AME algorithm. 

 
Figure 5. Distribution model of Xylopia aromatica. 

 
Figure 6. Distribution model of Byrsonima intermedia. 

 
The hot colors in the map represent more suitable 

environmental conditions for the species. Both distribution 
models are similar because the species are from the same 
biome. Thus, the environmental conditions for the species 
survival are the same. However, the biological analysis of the 
models generated is beyond the scope of this paper. 

VII.   FINAL DISCUSSION AND FUTURE WORKS 

The aim was to present a new Adaptive Maximum Entropy 
approach for modeling biological species geographical 
distribution. Besides the AME approach integrated to the 
openModeller tool, some experiments were carried out to 
show that this approach works as well as the classical 
algorithm. 

With the experiments carried out, it was possible to 
validate the use of an Adaptive Maximum Entropy approach 
for modeling biological species geographical distribution, 
since the results obtained were very significant. It was 
observed that, for this data set, the AME approach was about 
33.5% faster than the classical algorithm, in average. Besides 
this, the accuracy had an increasing of 6.7% for Xylopia 
aromatica species and 40.19% for Byrsonima intermedia 
species.  

These results obtained motivate the continuity of the 

Xylopia aromatica 

Byrsonima intermedia 
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researches in this area. Since the increasing in accuracy was 
very different for the two used species, one of the future 
works will be to test the proposed approach with a larger set 
of species. 

Besides the improvement of the developed approach, 
another future work is the parallelization of this algorithm. 
The openModeller project has a cluster with 80 cores and 
there are just a few algorithms running there. The MPI library 
(Message Passing Interface) will be used for this 
implementation. Some algorithms available in the 
openModeller tool were already parallelized using this library, 
such as Jackknife [56]. Thus, the same strategy will be used to 
guarantee the compatibility. In the parallelization of AME 
approach, several processes will work at the same time 
computing the log loss of a different set of features. 
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