Use of Extended Adaptive Decision Tables on
Reconfigurable Operating Systems

S. M. Martin, G. E. De Luca, and N. B. Casas

Abstract— Throughout the last decades, many reconfigurable ~ Most of the now available public operating systearesnon
operating systems have been developed in order tetlusers and re-configurable. This means that their resourceiaidination
programmers make decisions upon the configurationfosome of policies are built-in and cannot be changed byuters.
the innermost kernel's aspects. These decisions,vhever, require We will use the nomenclature used in our previowskw

an advanced level of skill in order to obtain someerformance [1] in which the processor usage, the memory distion or
advantage. Furthermore, they can be detrimental tdhe system’s P ge, y

performance if they are not careful taken. Lettingthe kemel itself @nYy Other resource management are said taspectsof the
do the decision-making upon the implementation oft$ aspects is a operating system. Each one of these aspects can be
safe and powerful way to manage re-configurabilitthat does not administrated using a policy onode.An operating system is

require interaction with the user nor the need of dvanced skills to said to bereconfigurablewhen one or more of its aspects can
take advantage of. In this article, we propose thesage of Extended change their mode during runtime without rebooting
Adaptive Decision Tables as a mean for the kernebtachieve the Although almost all of the commercial an.d home

capability of taking intelligent decisions based dely on the users’ . . o
process creation behavior. requirements for an operating system can be sisfith a

non-reconfigurable conventional kernel, there potential for
Keywords— Decision Tables, Operating Systems, Adaptive the adaptable capabilities of a reconfigurable &ern
Device Some examples of reconfigurable operating systennsh
as Kea [2] and Synthetix [3], have shown betteultseshan
their commercial counterparts on tests driven urtleerse
he operating systems have been developed and osedafd changing execution conditions and process leisav
decades to abstract the complexity of the undeglyithers, such as SPIN [4], provided an interface for
hardware for both end-users, and application progrars. extensibility where the programmer himself couldvalep
Through them, the computer and its components easeBn new modes for the kernel’s aspects.
as administrable resources that users and thelicafipns can All of the reconfigurable operating systems avddab
request and use. The list of resources that arénigtrated by ready to use, source code, or just in academidolitalphy —
the system kernel includes, but is not limited poocessor depend upon the user/programmer to decide both hwhic
usage, memory distribution, permission for inputpoi changes make to the kernel configuration and wbemake
operations on actual or virtual devices, amongrsthe them. In the majority of the cases, this is achievsy
The first operating systems, such as MS-DOS, olfdyad providing an object-model based kernel-processfate [5]
the execution of a single process at a time. Fatrriéason, its that presents the functionality for a certain sseyiand allows
kernel's only functions were limited to booting,opiding a the programmer to define which object instance gets
command line, and some simple services. The exg&tutexecute them.
process would take the complete control over theegssor, In spite of the great flexibility and adaptive patial that
the memory, and the 1/O devices, and the systemekéad no can be obtained with the interface approach, rititditions can
administrative responsibilities whatsoever. be often enough to prevent users, programmers;esr kernel
With the development of the more advanced UNIX-Haseesigners, from using it.
operating systems that allowed the execution ofenioan one At first, it takes an application programmer to knat least
process at a time, and the logging of multiple sisesomething about the kernel’s intricacies in ordeobtain any
concurrently, new challenges arose. The issue ofchwhadvantage. Some programmers may even have to igatest
processes or users should have more processor tis@geor about them before knowing where and what to change.
greater free memory chunks available, was addressedOn the other hand, legacy, standard, or reusedrgmsy
differently among the different kernel developeitow, the wouldn't have the opportunity to harness its besefrhey
diversity of resource administration policies amatifferent might have to be re-engineered before being ablestothe
operating systems provides users and companiesige raf interfaces properly. End-users with programs ofirttosvn
problem-specific products to serve their own businewouldn't stand a chance on harvesting the potemtiathe
necessities. underlying re-configurability.
In this article, we present a different viewpoiot kernel
i . reconfiguration. Since letting the users have tleeision-
S. M. Martin, G. E. De Luca, N. B. Casas, Departatmele Ingenieria e . L .
Investigaciones Tecnolégicas, Universidad NaciafealLa Matanza Buenos taking responsibility offers great potential forripemance
Aires, Argentina. {smartin, gdeluca, ncasas}@unéa.ar improvement, but lacks the portability and demarnigh
skills, we thought that the kernel itself may bdeatn take

|I. INTRODUCTION

charge of the issue. The three main arguments stippadhis
idea are:

First, the kernel developers already have all #ikssand
knowledge about its aspects and modes’ inner cofitigle.

multiple modes for any aspect, and that those modekl be
exchanged while still on runtime. The efforts owveleping a
design pattern for this mechanism ended up in
methodology proposed in [1].

the

They can design better and faster mechanisms fademo In that methodology, four steps had to be conduafezh

exchanging so no skills or specific knowledge stobk
demanded to their users and programmers whatsoever.

Second, all the applications to be run can be kern
agnostic and still harness the benefits of recoméition.

Lastly, the kernel can take decisions upon severate
indicators than a programmer could. Some of themy b®&
inaccessible for a process at runtime, and somer otlay be
too complex or too kernel-specific for a programrneitake
into account.

We will use Extended Adaptive Decision Tables —fro
now on, abbreviated as EADTs — as the device tilbalow
us, as designers, give the kernel the mechanisnddoision
making based on the behavior of its users.

All the analysis and examples presented in thislartvere
conducted on SODIUK a project for an academic
reconfigurable operating system [6] [7] and, mgrecifically,
its reconfigurable process scheduler aspect.

The rest of this article is organized as followsct®n 2
introduces the reconfigurable kernel design metlaggoused
to analyze each aspect. Section 3 introduces tHel\3@'s
reconfigurable process administration aspect inengetail. In
section 4, that aspect will be analyzed in ordeolitain the
decision taking criteria necessary for the consioacof the
initial decision table that will be presented incten 5. In
section 6 explain what adaptive elements were irsedder to
obtain the adaptive decision table. In section & awnalyze the
extended mechanism that allows for multi-criteriacidion
taking in order to generate the final extended adajglecision
table. Finally, section 8 discusses the future wamll tests to
be conducted, and the conclusions of this investiga

Il. RECONFIGURABLE DESIGN METHODOLOGY

The SODIUM project was started back in 2005 with #im to
give the operating system class’ alumni the opmitgu not
only to grasp the theory concepts, but also to thetm
involucrate actively in the development of a kerdlthe end
of each year, all the practices were tested, aadbtdst ones
were integrated into the kernel for the next yealismni to
use.

One of the first dilemmas of this methodology eneerg
when, predictably, many different modes were prognzd
for the same particular aspect. For example, haeirgasic
fixed partition memory administrator as a base, ractice
asked to develop another one based on paging, dfidice
student to replace the existing one. This forcibtplicated a
loss in didactic value since, even though the gagipproach
was, in overall, better, the former mode was sideful for
teaching purposes.

Given this situation,

implementing a mechanism by which SODIUM could Hand

! Sistema Operativo del Departamento de IngeniezidadUniversidad
Nacional de La Matanza. Web: http://www.so-unlamao/

each aspect to be designed for re-configurability:
e 1. The current situation must be analyzed for each
possible transition between modes — if any —, the
kernel mechanism that should be developed, and the
timing level.

All the currently available modes should be
enumerated along with a graph showing new ones, in
order to uncover possible missing transitions.

Design the reconfigurable aspect indicating
implementation details, timing levels, and elentent

be verified for possible data loss for each tramsit
Design, document, and publish the kernel/user
interfaces for the reconfiguration mechanism.

Although this methodology is useful to design
reconfigurable schemes for existing aspects andes)atddoes
not contemplate the decision-taking process. It faends at
step 4, where it indicates that a kernel/user fater should be
designed. In our proposal, we seek to vary thioulogy to
let the kernel reconfigure itself. In order to dm, sve shall
replace the former step with a new one:

4. Establish the criteria and events determining taedn
for mode changes, and the mechanisms to allow
them.

The timing levels are also important because theijcate
which conditions within the system determine whetlae
transition can be executed or not. Four timing levare
defined. Level 1, when the transition can be omyelzecuted
by recompiling the kernel; level 2, when the tréinsi can
only be executed by rebooting the system; levedi3en the
transition can be executed in runtime, but globddy all
processes; and level 4, when the transition caexbeuted in
runtime, and in particular for each process.

In the next section, we will use the presented odilogy
in order to analyze one of the main reconfiguraspects of
SODIUM’s kernel.

I1l. SODIUM’ s RECONFIGURABLEPROCESSSCHEDULER

Even though this article presents a general prégos&ernel
decision-taking on re-configurability using EADTSH, is
necessary and much easier to explain its implertientateps
by using an existing reconfigurable aspect as base.

No other reconfigurable aspect has been moreefand
researched upon in SODIUM than the process schedtle

the professorship agreed &punts with 6 different modes available: Round-RofRR),

Round-Robin with Priority Queues (RRPR), Round-Robi
with Variable Quantum (RRQV), First-Come-First-Serv
(FCFES), Shortest-Finishing-Job-First (SJFS), andtBéme-
Of-Service (BTS). Many of these modes specificatame

standards and can be found in specialized operaiisgm’s
books. We used a general specification found ina8h base
for almost all of them.

This aspect has the particularity that all of itmédes can
transition to all of the others without any limitat. This
means that it counts with 30 different transitidosevaluate.
Also, the timing level for all transitions is 3. ifhis because
any changes in the process scheduler will forcilffigct all the
process at the same time. No changes can be m
individually for any process.

Since straightforwardly programming 30 differen
functions —one for each transition— could resulaifloated
and difficult to understand kernel code, we decittednalyze,
at depth, which actions were to be shared betwéen
different transitions’ procedures. We identified cBmmon
actions that could be normalized and reutilizedvieen all the
procedures. Briefly, these actions asetbasealg(alg)to set
the basic scheduling algorithrmitPriorities(), to initialize
priorities for RRPR;initQTime() to initialize quantum times
for RRQV; setNonPreemptive@nd setPreemptive(Jo set a

modes would be so complex that it would go agdissinain
benefits.

Next Mode

RR PR | QV FC SJ BT

RR 0 a b c d e

- PR f 0 g h [j

oo QV | k | 0 m n A
S o

s5s| FC 0 p q 0 r S

O SJ t p q u 0 S

BT \Y w X y z 0

Table 3.2— Mode transitions and their set of actions

Although this transition-actions relation allonetkernel to
execute transitions by itself, it is still not egbuto let it take
decisions. Having this relation between transitiand actions
to be performed is the first step in order to gateera
conventional decision table —from now on, abbredags

preemptive or non-preemptive scheduler behavi@TD-. The ¢TD will hold the first trivial conditieaction
respectivelygueueMode(moddd set a unique or level basednechanism that will indicate the kernel when andatwh

ready process queue; arglantumMode(modg)to set a
unique or priority based quantum evaluation. In |&aB.1,
different groups of actions are set and identifieith an
alphabet letter codification.

transitions execute.

setbasealg(BTS) X

setbasealg(RR)

initPriorities() X | X

initQTime() X X

initReorder(CTIME) X X

initReorder(PTIME) X

Actions
setNonPreemptive() X | X

setPreemptive()

gqueueMode(UN) XX [X|X[X

queueMode(PR) | X

X X X

guantumMode(UN)

X| X [X[X|X

quantumMode(PR) X X

Codification albjc|d|e|f |g]|h

X X
i |j|k|lI'|mniAdflolp|q|r|s|t|ju|v|{w|x]|y]|z

Table 3.1- Set of actions and their codification for modengitions on SODUIUM’s process scheduler

These groups of actions represent functions it éhe
execution of all the analyzed transitions. The roBactions
per transition can be seen in Table 3.2. Dheaction means
that no procedure should be executed.

In Table 3.2, the SODIUM kernel can query whichiatd
to execute — all of them are commutative — in otdechange
the scheduling mode to another while still on mneti This is
a key step for an autonomously reconfigurable Keraed
must be designed by the systems developers. Tieswall be
used later again in Section 7, when new rulesaofsition will
have to be created to contemplate new executinditbons.

One of the visible limitations of this approachthst it is
not extensible. All the transactions and groupaations must
be determined before the programming of the kerAely
mechanism that would allow a programmer to enalge n

IV. DECISION-TAKING CRITERIA

In order to let a transition-mode-actions table,tlas one
obtained before, allow the kernel to have decisaking
capabilities, we need to define two new key elesient
conditions, which will indicate which rules -as a
generalization of what a transition is, in the eowtof this
article— must execute in a given moment; and eyethest
indicate when the conditions must be evaluated.

Events by themselves can be also considered astioosd
for if they do not trigger, no rules associatedhtem will be
executed. However, from an operating system’s vitdve
distinction is important. Events are codified asgger
functions set in different parts of the kernel whdonditions
are a part of the cTD to be developed. In the aseur

process scheduler, event triggers will be set ewang a profile it into well-known categories. We focusethat
process is created, Kkilled, interrupted, or reldas€his profiling using a technique presented in [9] based
includes hardware/software interruptions, syscalldD frequencies of system calls, and maintaining appecess
requests and responses, and process intercommanicgbrofiling information structure such as the onescsfed for
routines. the Solaris operating system in [10].

Defining conditions as such will be a little morniéidult. In Executing processes fall, after a short period rofiling,
order to define in which executing scenarios wd hélve to into one of the following application categoriedided by us:
evaluate three different edges of the process sdihgd Interaction Intensive Applications (ll), such asngs or
scheduling metrics, application categories, andordlym- command-line consoles; Multimedia Applications (Much
metrics relations. as video and audio editing tools; 1/O Intensive Kggiions
(ES), such as DVD burners or data transfer programesrnet
Applications (WEB), such as web browsers or network
programs; Processing Intensive Applications (P)¢chsas

)) compilers or scientific programs; and System Amgilans
SODIUM’s process scheduler counts with a set ofefrics (S), such as services or maintenance programs.

to evaluate and report the performance of eachdsting After conducting several tests on sample prograhss t

algorithm. Most of them are based on the metrssresent \yere successfully profiled, we could establish \hinetrics

in [8]. Here is a brief enumeration and explanafoneach 5re more important for each application categarthe Table

one. 4.1 we show the most important metrics for eackgmty that
resulted from the tests.

) indicates the ratio between the

A. Scheduling metrics

- Processor Usage%,

cpu

time the processor spends actually executing pseses Cat_egories _ Metrics
and the time that it spends idle or in overheadlyos| Interaction Intensive Response Time
procedures. Appl(|::|;:1t|ons Waiting Time

- Throughput ;) indicates the amount of processes Mulimedia Applications Waiting Time
finished given a finite differential of time. SODNU (M) Processor Usage
updates this metric every 10 minutes. I/0 Intensive Applications Throughput

- Turnaround Time 1) indicates the time that took (ES) Response Time
process to completely executes, from when it iated Interne{/\,/AEpgllcatlons Effeth;ve Time c;f_Serwce
until it is terminated. It includes the time spediting (-) i esponse 1ime
for enough free memory, to be executed, and If0 Processing Intensive Turnaround Time
operations. Appléga)mons Throughput

- Waiting Time (,,) indicates the total waiting time of a| System Applications Overhead
process during all its execution from the momeris it (S)

created. I/O operations or syscalls are not inauide
this metric since they represent actual requested
operations from the process.

Table 4.1- High priority metrics for each category

h For simplicity reasons, all the other metrics tha¢ not

- Response Timeﬁ) indicates the average time, for eac !) o i . °
. . . considered as high priority will be considered adifferent
process, after which, the first response, suchrasg for that given category

a character on the screen, is produced after a user
request.

- Effective Time of Servicet() indicates the sum of time

that the process has spent in actual usage of the_. . .. -
processorp P g Since we now count with the possibility of profiina

- Overhead (¢) indicates the time that the processo[?roCeSS into a categgry, keep scheduling metricsougate,
know which metrics favor each category, we ogd to
ermine which scheduling algorithms (modes) inagro
those metrics.
We found some of these algorithm-metric relatioineaaly
B. Application Categories documented [8] in the bibliography. However, we aacted
additional tests to confirm them, and also figuue those that
Since it is not possible to know completely whatiaas were lacking. From these tests, we obtained thatseshown
and services will an application request befoie dompletely in the Table 4.2. In this table, the beneficiahtigns in which
executed, the only way to estimate its future barais to the algorithm improves the measures from each metre

C. Algorithm-Metrics Relations

spends executing system maintenance or manag
routines.

marked with a (+); the neutral relations in whible &algorithm

V. CONVENTIONAL DECISIONTABLE

doesn't affect the metric are marked with a (OF tregative The rating information obtained in the Table 4.2#®ugh to
relations are marked with a (-), and the (x) mankkicate that gecide which scheduling algorithm to use when theegsses

the algorithm is extremely negative to the metric.

Metric

Algorithm | %cpu | # | toy | tw | & | ts | Oy
RR + 0| -| 0| 0 0 O
RRPR + Ol O] 4| O X O
RRQV 0 O 0| O] +# x O
FCFS - 0| +| x| x| x +
SJFS - + o+ x| X X -

BTS - o -| -| O + -

Table 4.2— Relations between metrics and algorithms

in execution pertain to the same application catego
However, this scenario doesn't cover all the exeaut
possibilities.

It could happen that only one process is in dz&ly queue.
This case may be important for batch processingesys
Using a overhead costly algorithm in these casesats
convenient. Therefore, we can establish that i cdsnono-
processingrfionqg, the algorithm used will be FCFS.

Also, a more common scenario is that when differen
processes of different categories try to executecaoently.
In this case, using the rating from Table 4.3 camlisleading,
because we are using simple heuristic and empificrnation
on complex cases. In fact, there are 720 different
combinational scenarios of mixed categories. Thimmexity
cannot be addressed a priori, by analyzing eacle d¢as
particular. This case of multi-category (multi) Wbk resolved
using an adaptive decision table —from now on, eddbted as

Rules 1|11 (1212|1111 (12(2|2|2|2|2|2|2|2|2|2|3
1123 506 7 8 90|1]2]3]4|5]6|7l8|olo|1]2]3]a|5]6]|7]8]9]0
Current RIRIRIRIRIP|P|P|P|P|Q|Q|Q|Q|Q|F[F[F[F[F[S|S|s[s|[s|B|B|B|B|B
Mode RIRIR|IR|R|R|R|IR|R|R|V |V |V | V|V |C|C|C|C|C|IJ|IJ|IJ|I|[I|T|T|T|T|T
Mono X X X X
& Il X X X X X|
2 M X X X X X
2| Current ES X X X X
3| Scenario | WEB X X X X X
P X X X X
S X X X
Multi X X X X X
Actions func() al bl ¢l d € f d ¢k K n (Aol p|lql r| s| t| p U 9 v y

Table 5.1- Conventional Decision Table for SODIUM Proceshestuler

We can now combine Tables 4.1 and 4.2 in ordebtaio
an algorithm-category rating in which the scorel witlicate
how much each algorithm benefits/handicaps eachcagipn
category. The amount of (+) marks per each higloripyi
metric that the algorithm beneficiates will scorepdsitive
point for that category; (-) will rest 1 point; (®ill produce
no effect; and (x) marks will completely disqualifhe
algorithm. The results from the combination arespreed in
the Table 4.3.

Algorithm
Category | RR | RRPR| RRQV | FCFS | SJFS| BTS
(1N 0 1 1 X X 0
(M) 1 2 0 X X 0
(ES) 0 0 1 X X 0
(WEB) 0 X X X X 1
(P) 1 0 0 1 2 -1
(S) 0 0 0 1 -1 -1

Table 43 — Rating relation table between algorithms and
application categories.

ADT- to be developed in the next section.

By now, we can contemplate the general case ofiphailt
categories with the most generally acceptable oé th
scheduling algorithms: RR.

The mono,multi, and the pure categories processes can be
interpreted as the conditions that, without comigniwith
each other, determine the whole universe of pasgikécution
scenarios. Also, we know which algorithm to use éach
condition, we can establish the transitions —amik thctions—
to execute in each case by combining Tables 4.3dhd

We now have all the elements to elaborate the dbst for
the SODIUM kernel to decide which algorithm useeath
moment. It will consist in a set of 30 rules conibg
conditions —current mode and current scenario— toir
transition actions. The cDT for the SODIUM process
scheduler is shown as the Table 5.1.

VI. ADAPTIVE DECISIONTABLE
A. Normalized Base cDT

The condition evaluation in the cDT of the Tabl& Bbeys to
that of an inclusive OR. This means that, it takety one

condition to be true in order to execute a givele.riror simultaneously, we will have to add adaptive meras to
example, rule 2 will execute ifdonoscenario is detected andour static cDT in order to turn it into a ADT. ADTermal
also if it detects anES scenario. However, the formaldefinition [11] [12] requires the specification afnormalized
definition of the cDT, that we must use as a base fbase cDT such as the one in Table 6.1, and alsadti&on of
developing the more complex ADTs in order to corglte adaptive functions to perform rule query, elimioati and
all the possible scenarios from the generalilzledti, requires insertion actions upon it.
the conditions to be evaluated with an AND logior Fhis, it In this investigation, we used a simple adaptivechanism
will be necessary to add duplicated rules thatemplate one that consists in the usage of two different ad&pfisnctions.
of the conditions that will be eliminated from theginal one. One is used to verify the existence of rules coplating the
Also, we need to eliminateonoscenario corresponding rulescurrent execution scenario. The other is used toaaiglew rule
because they can be directly programmed into thedider; in case that no such rules were detected.
and those corresponding theulti scenario, because the ADT These adaptive functions called Ad1l and Ad2, etecatter
will allow us to contemplate all the particular esl of and before their calling rules, respectively. Adilyosets the
combining categories scenarios. value of thestatevariable to D (determined) when an existing
Another modification to the original cDT is theddtibn of rule can manage the current state of conditionsetWio rule
the not mark (-) indicating that that condition mhbs false in can handle the current conditions, a new rule {81) charge
order to execute that rule. The resulting fixed d®$hown in to set thestatevariable to ND (non-determined). This variable
the Table 6.1 (some of the rules have been bypass#tt is set back by the execution of Adl, in case thatla was
representation for format purposes). found. On the next step, if the state is equal B, EWnother
new rule (32) executes the Ad2 adaptive function.

sl3lalsle 2212121223 The Ad2 adaptive function is in charge to add & meles.
cren RIR(RRIBTPTRTG é (53 :’; ; 2 g g These new rules will transition to the current méuten any
vode IRIRIRIRIRIRIRIVIIRIVICIT IS ITIT other mode given the current conditions. The ref$n.1I.th|s is
M - o I - o T o -1 - that, whenever in the future, when the same cantditrepeat,
Mo x -0 1-1-1-1- they will transition to the mode in which those ditions
ES |-|-|-|-|-|-|-]-.+-|-Ix|{x]-]x]- were found initially. The rationale behind thistigt, when a
WEB |- |-[-|X|-|-[X]-f.|-]-f-|-]-|-]- new set of conditions is found, is probably becamisky one
P il Bl N el el 12 ol e T e el el el Tl new different category process was created, whereetis a
fu:C() NI Q'J - j' - E an ('1 ﬁ . ’; whole group of processes of an existing categorgaaly
running. By doing this, we try to maintain the bfseof the
Table 6.1 - Normalized cD® current mode for the existing processes.
Adaptive Functions Declarations Rules
Adl Ad2 212|2|2|3|3|3|3
011123 6|7|8(9|0]12/|2|3
H|?|H + |+ |+ |+]+] +lISIRIRIRl R |R|R|R|R|R|R|R|E
Current R|IP|Q|F|S|B R|R|R F|S|S|B|B
Mode RIR|V|C|J|T RIR|IR C|J|J|T|T
State N
Il Cl Cl Cl C]_ Cl Cl - | X |- - |- -l - -
Conditions M GG GG GG X|- |- -l--1-
ES GG GG |GGl [-]-1- x x| x -
WEB Glala|c e [cll [-1-1-
P GGG |GG G [-]-]x
s G [Co[Go|Co|Co [Golll [-]-]- - 1= Ix - Ix
Actions func() $ | S [0 [B0 [Bn [0 |albid| ... |g|g|u| x|y
State= D N
Adaptive Adl | A X | X | X | X | x| X XX|X| X |[X|X|[X]|X]|X X
Functions Ad2 B X

Table 6.2— Adaptive Decision Table for SODIUM Process Schedu

B. Adaptive mechanism

) The implementation of this mechanism onto the
In order to contemplate new rules for complex soenagypiacent cDT in order to generate the first SODIpidcess
conditions, such as Il and M category processesimgn ccheduler ADT is shown as the Table 6.2.

The action to be performed by every new rule tsbgethe
$n function that takes the rule’s own starting moadel ¢he
current mode —as destination mode— as parameterbtéin
the specific set of actions for that transition.eTtesult of
executing $are exactly those found in the Table 3.2.

An example of its adaptive functions can be illatgd as
when a new scenario is detected in which the (M) the (S)
conditions are detected simultaneously. Six nevesuhre
created to handle those conditions in combinatidh the six
possible current modes, and are added to the suritj@dT.

We will recur to the formal definition of the EADffom

[13] and [14] in which multiple criteria can be @efd in order
to determine an alternative.
The original formulation consists on a base ADThsas the
one obtained in the Table 6.2 and the addition wfiliary
functions (FM) that execute prior any other actaomd define
values for variables that those actions will use.

In our case, we want to define the destination enod
parameter for the function,dusing a multi-criteria method.
The required steps for defining the method conisisthree

The Table 6.3 shows the effect of their executioghlighting modules:
the new rules in shaded green.
Adaptive Functions Declarations Rules
Adl Ad2 ol1l2(3 2121212331333 (3|3|3(3]3
6(7/8|9/0(1(2|3[(4|5|6|7|8|9
H|?|H+|+|+|+] +] +ISIRIRIRl R |RIR|R|R|R|R|R|E|R|R|R|R|R|R
RIP|Q|F|S|B RIRIR F|S|S|B|B R|IPIQ|F|S|B
Current Mode RIR|v|c|i|Tl [RRR clalalt|T RIR|V|c|a|T
State N
Il C|C|C|C|C|C - [x|-
M GGG |IG |G |G X|- |- === -] X [X [X [X [X |X
ES GG |G |G |G |G |-]-]|- XX |- |X]-
WEB G |IC|CGI|CG|IC|C -1-1- -l--1-- RN
P G |G |G |G |G |G |- |- |X
S GIlGC |G |G |G |G - - |- - l- x| -]x X [X [X [X [X |X
func() S | B B | B0 | B [0]albld qlqlu| x|y c|h|m|O0|u|y
State= D N
Adl A X | X | X | X | X| X XNX|X| X | X|X]|X]|X]|X X X [X [X |X |[X |X
Ad2 B X

Table 6.3— Example of an ADT creating new rules for a forlpjaon-contemplated (M) and (S) Scenario

However basic, this mechanism actually learns fiiwe

Module | consists in the identification of the fdifent

users’ behavior, and will converge into a complé2® rules criteria —metrics, in our case— and alternativesdes— for the
cDT differently for each user, or each run. On dkleer hand, decision problem. Their quantitative relation wiléfine, in
it shows some limitations on the fact that, onceated, the each case what alternative will be better for eacénario
new rules can't be modified, even if the reachimgnario taking the metrics as reference. In our case ieelthe a C
should indicate a new transition for that rule.lg doesn’t set of conditions, and an A set of alternativethasollowing:

provide the ability to contemplate multiple crigerfor the
decision making process. These problems are aititdsy
using the extensions shown in the following section

VII. EXTENDED ADAPTIVE DECISIONTABLE

The ADT obtained in the previous section allows ¢heation Criterion Preference

of new rules that contemplate conditions that weus Category| %cpu| # | tov | tw | & | ts | Oy

included in the original cDT. However, the onlyterion used (1 1 1| 1] 3| 3] 1 1
for determining the transition actions was thanintaining (M) 3 1 1| 3 1 1 1
the original current mode. This criterion, doessohtemplate (ES) 1 3 1 1 3 1 1
the usage of direct indicators of performance sashthe (WEB) 1 1 1 1 3| 3 1
metrics, nor a mechanism to alter the already eccatles. P) 1 3 3 1 1 1 1
Therefore, it is necessary to extend the definitblour ADT (S) 1 1 1 1 1 1 3

in order to include specific functions that coulecitie which
mode to utilize based in the relation between thecgsses
categories and the maintained metrics.

- C= { %E‘puJ#ﬁ tcw tuﬂt.'” ts*':}zs}

- A ={RR.RRPR,RRQV FCF5, 5]F5, BT5}

Table 7.1- Criterion preference by category

Module Il consists in obtaining a Z matrix of fgmance

for each combination of criteria and alternativelsing the
. L. Category| %cpu # tev tw t ts
Saaty fundamental scale for comparing the relathgortance VTR 1 1 1 5 s 1 3 Total
of each criterion with each category we could efatithe [—opre| X X2 | X2 | XD] XP] X- | X2 | Preference
Table 7.1 RR 035 [013 005 0,18 0,16 0,23 015 0,1
a il]) RRPR 035 | 013 0415 0454 0,16 0p3 015 0,2
On the other hand, we define the importance of eaCRrqQv 0,12 | 0,13 0,30 0,00 0,02 0,03 045 0,24
criterion pair will vary regarding the amount ofopesses of| FCFS 0,06 | 013 0,3p 0,02 0,02 0p3 0}45 0,11
each category that is ready to execute multipligd the SBJTFSS 006066 00'133 oo’o?’ro 006(”2 00'1362 00%3)050’05 0130'03
criterion preference shown in the Table 7.1. Faneple, for : : = P o P :

an scenario where 2 (Il) category processes, d&) dategory

process are ready, the importance of thand t metrics will
be equal to 6, and that of thewdll be 3.

With those values in mind, a criteria pair prefeeman be

elaborated for the example as the one shown ifadiée 7.2.

Criterion Preference

Criteria | %cpu | # tey tw t, ts oy

%cpL 1 1 1 6 6 1 3
1 1 1 6 6 1 3
tey 1 1 1 6 6 1 3
tw 1/6 1/6 1/6 1 1 1/6 3
t; 1/6 1/6 1/6 1 1 1/6 3

t. 1 1 1 6 6 1| 3

oy 1/3 1/3 1/3 1/3 1/3 1/3 1

Table 7.2— Relative preferences between criterion pairs

Criterion Preference

Table 7.3— Matrix Z of alternatives preference

It can be seen on Table 7.3 that, for the examiile two
(I) processes, and one (S) process, results ineterb
preference for the RRPR mode, just above that ®RRQV
mode. The Z matrix will be regenerated completedgda in
the amount of ready processes per category ea&hthiat an
adaptive function calls to a gen()named function. Another
z_get() named function will be used to obtain the most
preferred scheduling mode from the current newesgix.

Module 1l consists in the development of the fuowes for
the insertion of new rules for the non-contemplatednarios
in the moment that they are detected. This wasadyjre
achieved in the TDA presented in the Table 6.2.

It will only take to add calls to the_gen()and z_get()
functions along with a new variabha to hold their obtained
value. In the Table 7.4 the final form of the EADGr the
SODIUM process scheduler is shown.

Adaptive Functions Declarations Rules
Adl Ad2 21212|2|3(3(3]3
01123 6|7/8l9/0]1]2]3
H|? + |+ |+ |+ +| +ISIRIRIRf R |[RIR|R|R|R|R|R|E
Modo RIP|IQ|F|S|B R/ R|R F|S|S|B|B
Actual RIR|V|IC|JI|T R/R|R C|J|J|T|T
Estado N
I GG |G |G |G |G |-]X]-
Conditions M GG |GGG |G X|- |- - -
ES G |G |G |G |G |G |-|-|- XX |- |X]|-
WEB G |Cyi|Cy|Cy|Cy|Cy - - - - 0- -] -
P G |G |G |G |G |Gl |-]-|X el el
S G |G |Co |Co|Co |Gl |-1-]- Sl x|-]x
Extended Adaptive| z_gen() X
Actions z_get() m
Actions func() $ B0 (S0 B0 (S0 [SwflO|a)b|d qlgqju| x|y
Estado= D N
Adaptive Functions Adl | A X | X | X | X]| X | X X X[X]| X [X|[X|X]|X]|X X
Ad2 B X

Table 7.4— Final form of the EADT for the SODIUM process sdhler

The values of the Table 7.2, obtained for this ipalidr
example, will vary depending on the current coodiéi EADT performance regarding different simple scessmias
categdmgen conducted due to the initial complexity of the
Nevertheless, continuing with the example, a nomedlfinal
Z matrix of performance can be obtained as thestrwsvn in
the Table 7.3.

scenario and the amount

of processes per

Until now only brief tests and simulations for tegt the

implementation. Their results were satisfactonhaligh yet
not sufficient to determine its full potential. Véstimate that
in the next few months, new developments will suppoe
usage of this powerful tool.

VIIl. CONCLUSIONS AND FURTHER WORK

(7]

With the usage of EADTs we were able to figure out

alternatives for execution conditions of an aspettan
operating system that were too complex or inacbksgio
figure out a priori. It also provided the kernelthvithe
capability of changing the existing rules basedtio@ new
process usage behavior of each user. While theserés may
be possible to attain otherwise, none of the o#agsting
adaptive devices provide such an intuitive mechmanfer
specifying rules and adaptive functions.

Although we are still lacking actual results frotasts
conducted on a variety of complex scenarios, tledipmnary
results on simple executions show that the decisaites
converged into ideal solutions in each case, aadthe kernel
was actually learning from the process schedulentsv This
actually serves as a demonstration that, so f&,pbssible to
create an automatic adaptive reconfiguration meashafor a
kernel without the supervision or explicit inteiaas with the
users and their application.

There is still much potential to be harnessed fritra
EADTSs. For example, we are not yet using the messfrom
the different metrics to evaluate each algorithmefiés from
the actual execution. Doing this would converge esplace
the initial heuristics on the algorithm-metricsatén tables.

Regarding SODIUM, there are other aspects of itgte
that are yet to be analyzed and converted into tacdyp
reconfigurable. That work should be done in thdofeing
months, during which we would still testing theuks of the
adaptive process scheduler.

Perspectives on the usage of adaptive mechanisms|

automatic non-interactive reconfiguration are png.

These could be applied on any other home or en'ﬂserp'

operating systems in the market without the needresf
engineering their existing applications. An init@st should
be paid, nonetheless; mechanisms for
reconfiguration must be developed and providedhpsts for
the EADTSs, conditions must be analyzed, and evenist be
set.

REFERENCES

S. MARTIN, N. CAsAs, G. DE Luca, “Disefio de un sistema operativo
reconfigurable para fines didacticos y practico8®. Workshop de
Tecnologia Adaptativa. San Pablo, Brasil, 2012.

A. C.VEITCH, N. C. HUTCHINSON, “Kea — a dynamically extensible and
configurable operating system kernel”, 3rd Inteioral Conference on
Configurable Distributed Systems. Vancouver, Canaéa6.

C. CowaNn, T. C. AUTREY, C. KRAsIC, C. Pu, J. WALPOLE, “Fast
concurrent dynamic linking for an adaptive opemtisystem”. 3rd
International Conference on Configurable DistrilbuteSystems.
Vancouver, Canada, 1996.

B. N. BERSHAD, S. SAVAGE, P. PARDYAK, E. G. SRER, M. E.
Fluczynskl, D. BECKER, C. CHAMBERS, S. EGGERS “Extensibility:
Safety and Performance in the SPIN Operating Syst&im Symposium
on Operating Systems Principles. ACM, New York, tediStates, 1995.
R.LEA, Y. YOKOTE, J.ITOH. “Adaptive operating system design using
reflection”. Object-Based Parallel and Distribut@dmputation. Volume
1107, Springer Berlin, 1996.

N. CasAs, G. DE Luca, M. CORTINA, G. Puvyo, W. VALIENTE,
“Implementacién de distintos tipos de memoria ersistema operativo
didactico”. XIV Congreso Argentino de Ciencia deCamputacién. La
Rioja, Argentina, 2008.

(1

(2

(3]

[4]

(5]

(6]

(8]

El

[10]

[11]

[12]

[13]

(14]

(18]

automatic

H. RYCKEBOER, N. CAsAS, G. DE Luca, “Construccion de un Sistema
Operativo Didactico”. X Workshop de InvestigadoegsCiencias de la
Computacion. La Pampa, Argentina, 2008.

A. SILBERSCHATZ, P. B. GALVIN, G. GAGNE. “Operating System
Concepts”. 8va Edicion. John Wiley & Sons, New dgréJnited States,
2012.

S.M. VARGHESE K. P.Jacos, “Process Profiling Using Frequencies of
System Calls”. The Second International ConfereoeAvailability,
Reliability and Security (ARES'07). Viena, Austré07.

R. McDOUGALL, J. MAURO, “Solaris Internals”. Second Edition.
Prentice-Hall. California, United States, 2007.

J.J.NETO, “Adaptative rule-driven devices - general forntida and a
case study”. Sixth International Conference on é&mmntation and
Application of Automata. Pretoria, South Africa,020

T. PEDRAZZI, A. TCHEMRA, R. ROCHA, “Adaptive Decision Tables A
Case Study of their Application to Decision-Takin@roblems”.
Adaptive and Natural Computing Algorithms, Springéienna, Austria,
2005.

A. H. TCHEMRA, “Tabela de decisdo adaptativa na tomada de dexcisd
multicritério”. Phd Thesis. Escola Politécnica, YSan Pablo, Brasil,
2009

A. H. TCHEMRA, “Adaptatividade na Tomada de Decisdo Multicraéri
4° Workshop de Tecnologia Adaptativa. Escola Pgiiiga, USP, San
Pablo, Brasil, 2010.

T. L. SAATY, “Método de Analise Hierarquica’. McGraw-Hill. San
Pablo, Brasil, 1991.

Sergio Miguel Martin is a Software Engineer from
Universidad Nacional de La Matanza (UNLaM),
Buenos Aires, Argentina since 2010. He performs as
a teaching assistant on the operating systems class
since 2010; and on the automata and formal
languages class since 2011. He is currently fingshi

his master thesis on Software Engineering on the
same university. His main investigation fields are
operating systems and high-performance computing.

Graciela Elisabeth De Lucals a Systems Analyst from
the Universidad Tecnoldgica Nacional, and Bachsfor
Computer Science from the Universidad Catélica de
Salta. Since 2005, belongs to the SODIUM research
group of the Universidad Nacional de La Matanza&oAl
performs as professor for the Operating SystemssCla

Nicanor Blas CasaslIs a Software Engineer from the
Universidad the Universidad Catélica de Salta. Sinc
2005, belongs to the SODIUM research group of the
Universidad Nacional de La Matanza. Also performs a
the associate professor for the Operating SystdassC

