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Adaptive Programming in Cyan
J. O. Guimarães and P. R. M. Cereda

Abstract—Adaptive devices make it possible to express algo-
rithms in a concise and readable way. However, programming
languages usually do not offer explicit support for this technology.
The programmer has to employ obscure language constructs and
tricks to make the runtime changes demanded by adaptivity. This
article shows how the Cyan object-oriented language already sup-
ports the adaptive programming style in a limited way. Since the
adaptive code is made with known language constructs (rutime
reflection), it is relatively easy to learn, use and understand.
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I. INTRODUCTION

Adaptive technology has emerged as an alternative and
viable solution for tackling complex problems [1]. There is
a quite vast record in the literature that describes methods and
techniques on problem solving via adaptive devices such as
robotics [2], data mining [3], natural language processing [4],
compiler construction [5] [6], privacy and personalization [7],
[8], access control [9], and much more. An adaptive device
may spontaneously change its own behaviour over time due
to some external stimuli.

This paper contributes to the adaptive technology area by
showing how adaptive features are supported by the object-
oriented language Cyan. The subject is not new: there are
programming languages constructs such as that proposed by
Freitas e Neto [10] to support adaptive programming. The
features presented in this article do not allow illimited code
modifications but they are implemented by the regular Cyan
constructs.

This paper is organized as follows: the following section
describes a subset of the Cyan language used in this paper.
Section III shows two mechanisms by which Cyan supports
adaptive programming: method insertion and code blocks. The
last section concludes the article.

II. THE CYAN LANGUAGE

Cyan is a new prototype-based statically-typed object-
oriented language that supports single inheritance, Java-like in-
terfaces, statically-typed closures (similar to Smalltalk blocks),
an object-oriented exception system, optional dynamic typing,
runtime reflection, and many other features. The language has
many innovations which are described in its manual [11].
In this paper, we will present only the features necessary to
understand how Cyan supports adaptive programming.

Before we proceed, let’s set up an example to be used as a
proof of concept for presenting the adaptive features of Cyan.
The adaptive automaton M , presented in Figure 1, recognizes
strings in the form anbn, with n ∈ N, n > 0. That is, strings
with an arbitrary number of a’s followed by the very same

jose@ufscar.br e paulo.cereda@usp.br.
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Fig. 1. An adaptive automaton that recognizes strings in the form anbn,
with n ∈ N, n > 0.

number of b’s. This language is of course context-free and
could be recognized by a simple pushdown automata. The
adaptive automaton is overpowered to this task since it has
the same computational power of a Turing machine [12]. But
it suits our needs to demonstrate how Cyan supports adaptive
programming.

The execution of M is very straightforward: the automaton
is initially prepared to recognize the “base case”; that is, ab. If
it gets a second a, an adaptive function f is triggered in order
to change the topology, adding a new transition consuming b
to a newly created state and updating the original transition
consuming the first b to go from that state to the acceptance
one, so the automaton is now prepared to recognize aabb. In
other words, for every extra a in the input string, M will add
a correspoding b to the “b recognition path”. If we want our
automaton to also recognize an empty string, we simply need
to make q0 an acceptance state as well.

Since now we have our example properly presented, let’s
go back to the language. Cyan is a prototype-based language,
which means the concept of class is replaced by that of
“prototype”. A prototype is declared almost exactly like a class
except that it is preceded by keyword “object”. Objects are
created from prototypes using methods called new or new:,
which is similar to some class-based languages. Prototypes
are grouped in packages which can be imported by other
packages. Methods are declared with keyword “fun” which
should be followed by the method selectors (explained later),
return value type, and the method body (between [ and ]).
An instance variable is declared by putting “:”, the variable
name and its type. An example of Cyan code is given below.

package main
// this is a comment
/* this is also a comment */

object AF_AnB
// methods are public by default
// the method name is "check:"

fun check: (:in Array<Char>) -> Boolean
self.in = in
if ( recognize ) [

// if the input has ended
// after recognizition, accepts
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return index == in size;
]
else [

return false;
];

]

private fun recognize -> Boolean [
if (in size < 1) [ return false; ]
else [

// declare local variable i
// of type Int with value 0

:i Int = 0;
while ( in[i] == ’a’ ) [
++i;

];
// sends message "size" to "in"

if ( i < in size ) [
if ( in[i] == ’b’ ) [

return true;
];

];
return false;

];
]

/* instance variables are
private by default */

:in Array<Char>
end

Surprisingly, the previous code implements our adaptive
automaton M from Figure 1 with built-in Cyan constructs.
Prototype AF_AnB has public method check: (an Array<Char>
as parameter, Boolean as the return value type) and private
method recognize (no parameters, returns a Boolean). There
is one instance variable, in, which is an array of Char. Inside
another prototype of package main, one can send a message
directly to AF_AnB, which is an object that exists at runtime:

package main
object Test

fun test [
// {# starts a literal array
AF_AnB check: {# ’a’, ’b’ #};

]
fun fat: (:n Int) -> Int [

if ( n <= 0 ) [ return 1; ]
else [

return n*(fat: n - 1);
];

]
end

Statement

AF_AnB check: {# ’a’, ’b’ #}

is the sending of message check: with parameter
{# ’a’, ’b’ #} to object AF_AnB. At runtime, there is

a search in object AF_AnB for a method named check: that
takes a Array<Char> as parameter. Since Cyan is statically-
typed, the compiler checks wheather prototype AF_AnB has
a method check: with an Array<Char> parameter. We use
words “object” and “prototype” to refer to “prototypes”.
When an object is created at runtime, as in:

:myTest Test = Test new;

the word “object” is used to refer to it. Here message “new”
is sent to object Test to create a new object (it would be
“Test new()” in Java). Test is the type of local variable
myTest.

Prototype Test declares a method fat: that takes one
Int parameter and returns an Int. It can be called as
“Test fat: 5”. Inside this method there is a recursive call in
“fat: n - 1”. Since there is no receiver for this message, it is
a message send to “self”, which is the receiver of the original
fat: message. self is similar to this of Java/C++/C#.

Following Smalltalk [13], “fat:” is called a selector. There
may be more than one selector for a method each one taking
zero or more parameters:

object Hash
fun key: String value: Int [ ... ]
...

end

This method can be called as

Hash key: "one" value: 1

We can also declare a selector without parameters:

fun add: key: String value: Int

Closures, which are unnamed literal functions, are supported
by Cyan. They are called “blocks” as in Smalltalk and are
declared and used as:

:isZero Block<Int><Boolean>;
isZero = [ |:n Int -> Boolean|

^ n == 0;
];
if ( isZero eval: 0 ) [

Out println: "0 is zero";
];

The type of variable isZero is Block<Int><Boolean>,
which means a closure that takes an Int parameter and returns
a Boolean. To isZero is assigned a closure, which starts with
[ and ends with ]. Between the ’|’ symbols should appear
the parameter and return value (which can be omitted because
it can be deduced). This closure takes a parameter called
n. After the last ’|’ there may appear a list of statements.
The return value of the closure is given after symbol ’^’.
Since closures are objects in Cyan, they have methods. In
particular, statements that appear inside the closure are put in
a method called eval or eval: that take the same parameters
and have the same return value as the closure itself. Then
“isZero eval: 0” calls the statement inside the closure,
which is “^ n == 0”. Since n receives 0, the parameter to
eval:, this call returns true.
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In a regular message send the Cyan compiler makes a search
for a method that matches the message send, starting in the
prototype that is the static type of the receiver. If a method is
not found there, the search continues in the super-prototype1,
super-super-prototype, and so on. Then in a statement

person name: "Anna" age: 2

the compiler makes a search for a method

name: String age: Int

in the static type of person, which is a prototype. If person
was declared as “:person Person”, the search starts at pro-
totype Person.

A dynamic message send is a message send in which
the compiler does not check wheather the static type of
the receiver has a method that matches the signature of the
message. It is like a regular message send in which the
message selectors are preceded by “?” as in

anObj ?name: "Anna" ?age: 2

A new method may be dynamically added to a prototype
using a method addMethod: ... defined in prototype Any,
the super-prototype of every one. We used “...” to elide the
many method selectors. The message send that follows add
a method called comb: to prototype Test, the receiver of the
message.2

Test addMethod:
selector: "comb:"
param: Int, Int
returnType: Int
body: (:self Test) [

|:n, :k Int -> Int|
^(fat: n)/( (fat: k)*(fat: n-k));

];

Selector addMethod: does not take parameters — it is only
used to make the code clearer. Selector selector: takes one
parameter which is the selector name. Selector param: is
followed by the types of the parameters of "comb:" (two
Int’s). The parameter names should not be cited. The return
type is also of type Int. The parameter to “body:” is a context
block, a special kind of closure that represents a method that
may be added to a prototype at runtime. A context block

(:self T)[ ... ]

may be added to prototype T or its sub-prototypes using
method addMethod: (as in the example above). Inside this
context block, the compiler checks wheather the message
sends to self match the methods of T. For example, fat: n
is a message send to self (since the receiver is implicit). The
Cyan compiler searches for a method fat: Int in prototype
Test and its super-prototypes (since the declared type of self
in this context block is Test).

A context block is like a method that is not attached to any
prototype but can be added to several of them dynamically.

1Analogous to superclass.
2The method is always added to the receiver.

By assigning the context block to a variable, we can pass
this variable as parameter to selector body: in several calls
to addMethod: ... thus adding the same context block to
several different prototypes.

addMethod: ... can add a new method to a prototype, like
in the previous example, or it may replace an existing method.
In the first case, we cannot call the method as in

numComb = Test comb: 5, 2;

because the compiler would not find a method
comb: Int, Int in prototype Test. This method should be
called using a dynamic message send:

numComb = Test ?comb: 5, 2;

The context block

(:self Test) [ |:n, :k Int -> Int|
^ (fat: n)/( (fat: k)*(fat: n - k) );

]

takes two Int parameters and returns an Int. After the
message send addMethod: ... of the example is sent, method
comb: is added to Test. It is as if we had copied the text of
the context block to a newly created method

comb: Int, Int -> Int

of Test. The above context block has three message sends
with selector fat:. These are message sends to the ob-
ject to which the context block is attached. In statement
“Test ?comb: 5, 2”, message fat: n is sent to self, which
is Test. Method fat: Int -> Int of Test is called.

There is another way of doing dynamic calls in Cyan. It
is using the ‘ operator, which is better explained using an
example.

:k Int;
:s String = "fat";

// same as "Test fat: 5"
k = Test ‘s: 5;
s = "test";

// same as "Test test"
Test ‘s;

If str is of type String and holds string strValue,

anObj ‘str

is a dynamic message send equivalent to

anObj strValue

The compiler considers that the return value type is Any, the
super-prototype of every one (the equivalent of Object of
Smalltalk and Java).

III. DEVELOPMENT

As presented in the previous section, the reflective features
of Cyan can be used for implementing adaptive code in an
unlimited way. However, by lack of space in this article we
will only show two ways of implementing adaptive features
in the language: by method insertion and by simulating code
blocks.
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A. Adaptive features by method insertion

The prototype AF_AnBn, which maps our adaptive automa-
ton M and it’s given below, recognizes the language L =
{anbn | n ∈ N}. Method check: calls method a to recognize
an and b to recognize bn. It only returns true if both methods
return true and the input was fully consumed.

Initially method b returns true regardless of the input. This
should be changed according to the number of ’a’ symbols
in the beginning of the input in. When method a is called, it
scans all the ’a’ symbols it finds and then adds to prototype
AF_AnBn a new method b that will scans a number of ’b’
symbols that is equal to the number of ’a’s already found.
The addition of a new method b is made with addMethod: ...
with a context object. Note that, when the context block is
created, the value of local variable n is copied to an instance
variable of the context block. That means any changes to
variable n inside the context block does not propagate to the
local variable n declared in method a.

package main

object AF_AnBn
fun check: (:in Array<Char>) -> Boolean

self.in = in
index = 0;
if ( a && b ) [

// if the input has ended,
// accepts
return index == in size;

]
else [

return false;
];

]

private fun a -> Boolean [
:n = 0;
// recognizes n symbols ’a’

while ( index < in size &&
in[index] == ’a’ ) [

++index;
++n;

];
// replaces method ’b -> Boolean’

AF_AnBn addMethod:
selector: #b
returnType: Boolean
body: (:self AF_AnBn) [

| -> Boolean |
:newN = 0;
while ( index < in size &&

in[index] == ’b’ ) [
++index;
++newN;

];
return newN == n;

];
return true;

before

an
a

&&
ε

b

after

an
a

&&
bn
b

Fig. 2. Languages recognized by methods a and b.

]

private fun b -> Boolean [
return true;

]

public :in Array<Char>
public :index Int

end

Method check tests wheather a && b is true. Then method
a and method b are called, in this order (there is no short-
circuit evaluation). If method a finds n ’a’ symbols in the
beginning of the input, it adds to prototype Test a method b
that checks if the next n symbols of the input are ’b’ symbols.
If this is false, the method returns false.

Figure 2 shows grafically what happens at runtime. The
rectangle labelled “before” shows methods a and b and the
strings they recognize in the first call to method check of
AF_AnBn. Initially method b recognizes the empty string.
Rectangle “after” shows these methods after method a is
called. This call changes method b in such a way that it now
recognizes language bn for n ∈ N. The value of n is known
after all ’a’ symbols are found. This value is used to create
an appropriated method b, which is a context object.

Method a replaces method b with a context object that
can be attached to prototype AF_AnBn and its sub-prototypes
(because it is declared as (:self AF_AnBn)[ ... ]). Then
inside the context object one can send messages that match
the methods of this prototype. Apparently there is no message
send to self inside this context object. But in fact there are
several of them because the public instance variables in and
index of Test are transformed into public get and set methods
that are called in statements like ++index and expressions like
index < in size.

B. Code blocks in Cyan

Methods can be dynamically added to a prototype and called
using a string holding the method name (as in “Test ‘s”).
This scheme can be used to simulate code blocks in Cyan.

A code block is simply an object with a run method (or
a piece of code that is put in a list. Then at runtime the
run methods of the objects are called by a special method
that we call a “combinator”. The combinator may use many
algorithms to define the order in which the run methods are
called. It may call one by one in the list order, it may call only
the method of the first list object, it may use the integer return
value of one run method to define the next method to call,
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and so on. There may be more than one combinator for a list,
each one implementing different algorithms. For example, one
combinator can recognize language L = {anb | n ∈ N} and
other may recognize L = {ab | n ∈ N}, both starting with the
same object list.

The run methods may as parameter a hashtable used as
shared memory. The pairs in the table would be composed by
a variable name and an object. This shared table can be used
for communication among the list objects.

The list can be changed dynamically to adapt the code:
methods can be removed, added, and replaced. Then it makes
sense to have a combinator that calls always method run of
the first list object. Thi is because the first object may change
from call to call.

Code blocks are implemented in Cyan using operator ‘ that
calls the method whose name is in a string. The example
that follows shows a prototype whose method check: returns
true if its parameter belongs to the language {anbn : n ∈ N}.
Method check: initializes an array funArray of methods to
be called by the compinator. Instead of objects with a run
method, here we put the name of the methods, as strings, in
the list (which is an array). The combinator gets each of the
strings of funArray and calls them in the order they appear.
Initially there is only one string, "a", in funArray[0]. Method
combinator puts this string in variable methodName (see first
statement after while in this method). Method a is called in
the message send

self ‘methodName

Method a inserts in prototype CodeBlocks a method b
and in funArray a string "b". Method b is inserted using
addMethod: ... as before. Statement

funArray add: "b"

inserts "b" at the end of array funArray.

object CodeBlocks
fun check: (:in Array<Char>) -> Boolean

self.in = in
index = 0;
funArray = {# "a" #};
return combinator;

]

fun combinator -> Boolean [
:i = 0;
while ( i < funArray size ) [

:methodName String = funArray[i];
if ( self ‘methodName == false ) [

return false;
];
++i;

]
return true;

]

fun a -> Boolean [

:n = 0;
// recognizes n symbols ’a’

while ( index < in size &&
in[index] == ’a’ ) [

++index;
++n;

];
if ( n != 0 ) [

// replaces method ’b -> Boolean’
CodeBlock addMethod:

selector: #b
returnType: Boolean
body: (:self CodeBlocks) [

| -> Boolean |
:newN = 0;
while ( index < in size
&& in[index] == ’b’ ) [
++index;
++newN;

];
return newN == n;

];
funArray add: "b";

];
return true;

]

:funArray Array<String>
public :in Array<Char>
public :index Int

end

As seen previously, code blocks implemented as a list of
objects with a run method need a hashtable that is used as a
shared memory. That is not necessary with the implementation
of code blocks in Cyan because the instance variables of
prototype CodeBlocks are used as shared memory. Let us
explain that.

Methods like b are added to prototype CodeBlocks using
addMethod: ... with a context object targeted to prototype
CodeBlocks (this is the type of self in the context object).
Therefore all added methods can call methods of CodeBlocks
in message sends to self. Then all added methods share
the CodeBlocks instance variables, which work like a shared
memory for them.

IV. FINAL REMARKS

The Cyan constructs used in this paper are limited in their
power — they are regular language constructs. However, their
limitations makes them more foreseeable since many code
transformations, like inserting a statement in the middle of the
code, are not possible. By using regular language features we
assure that a regular programmer can understand them rather
easily.

By using adaptive programming, we aim at reducing the
burden of writing complex code; once the transformation rules
are defined, the code evolves through a well-established space
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of configurations without external interference. Problems that
require intricate interations may benefit from the techniques
presented in this paper since they are made without adding
any new constructs to the Cyan language. Therefore, they are
relatively easy to understand and use.
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