
DRAFT
A recommendation engine based

on adaptive automata

Paulo Roberto Massa Cereda
João José Neto

17th International Conference on
Enterprise Information Systems∗

Abstract

The amount of information available nowadays is huge
and in raw state; systems have to act proactively on
selecting and presenting context-relevant information,
but such feature is time-consuming an exhaustive. This
paper presents a recommendation engine based on an
adaptive rule-driven device – namely, an adaptive au-
tomata – as a lightweight scalable alternative to usual
approaches on resource recommendation. The tech-
nique employed here is based on frequency analysis in-
stead of relying on usual machine learning.

1 Introduction

The growth of social media and the diffusion of the In-
ternet itself brought several challenges to the way data
are traditionally analyzed; the amount of information
available is huge and in raw state. In order to en-
hance browsing and learning experience, systems have
to be proactive by selecting and presenting context-
relevant information, for example, offering related sub-
jects in an e-learning environment or by suggesting
movies based on customer’s history records; such fea-
ture is usually time-consuming and exhaustive for the
whole computational infrastructure [6].
Adaptivity is the term used to denote the ability of

a device to modify its own behavior without external
interference [13]. For example, in a chess game, such
modifications are triggered as the application of a rule
pattern given a certain situation, like a pawn that ad-
vances all the way to the opposite side of the chess
board and triggers a rule which promotes it to another
piece of that player’s choice; the pawn now has its own
behavior changed to another piece and may act like so.
Any rule-driven device can exploit the self-modification
feature by adding an adaptive layer on top of its un-
derlying rule set. In this paper, we will use an adaptive
automata as computational model, which is proven to
be Turing-complete [17].

We present here a simple and fast recommendation
engine that uses a well-known computational model en-

∗Disclaimer: this is a draft paper. The final version will ap-
pear in the proceedings of the 17th International Conference on
Enterprise Information Systems (ICEIS 2015), 27–30 April, 2015,
Barcelona, Spain. All rights reserved.

hanced with an adaptive mechanism as a lightweight
alternative to usual approaches for tackling raw data
and trying to extract patterns and behaviors in situ-
ations for which absolute answers are too costly, and
suboptimal solutions can be accepted. The use of an
adaptive rule-driven device allows a compact yet ex-
pressive model which escalates on demand based on
the current usage scenario [6].

2 Background

There is a vast literature on how to identify and rec-
ommend resources that are relevant for a person or a
group of people based on a couple of criteria. One of
the most known methods for this purpose is called a
recommender system [16].

Recommender systems usually rely on two tech-
niques known as collaborative and content-based fil-
tering. The former is preference-oriented, recommend-
ing resources according to information obtained from
groups of people that share similar trends and behav-
iors [19]. The latter is profile-oriented, which classi-
fies resources and recommends similar ones based on
interests of some person [15]. Both techniques do
have shortcomings, such as data sparsity and scala-
bility [4]; hybrid versions are usually employed in or-
der to explore the strongest points of each original ap-
proach without ignoring the current context being con-
sidered [1].

More recently, machine learning algorithms have
been used for extracting association rules based on
available data and finding patterns and trends [8]. The
main purpose is to establish correlation rules amongst
resources. Although being extremely powerful, such
techniques are very expensive in terms of computa-
tional efforts and might demand an impractical time,
depending on the size of the data and how resources
are represented in the system [20].

Cereda et al. [5] describe an alternative approach
for recommender systems, relying on discrete metrics
and adaptive techniques. The recommendation process
was managed by an adaptive rule-driven recognizer; by
submitting two resources ri and rj to the recognizerM
as an input string w, for example, if w ∈ L(M) means
that rj could be a good recommendation given ri and
vice versa. One of the most interesting aspects pointed

1

DRAFT

out by that early work was the model efficiency, since
it could handle queries on a pair of related resources in
polinomial time based on the length of the input string.

The main shortcoming of this approach, however,
is the lack of proactivity, that is, the recognizer ac-
cepts/rejects queries about related resources, but it
does not answer which resource could be a recommen-
dation. Besides, the model suffers from data sparsity,
leading to a problem known as cold start [3]. Inspired
by this initial work, we propose here a new model,
built from scratch, which aims at minimizing the ef-
fects of data sparsivity and cold start and offering a
lightweight scalable alternative to usual approaches on
resource recommendation.

It is worth noting that most approaches so far take
the artificial intelligence path [1], including graph-
based recommender systems using an n-layer approach
in order to establish correlation rules amongst relevant
resources [12]; however, the number of layers and re-
sources might greatly increase data sparsity and in-
crease computational processing. Our goal in this pa-
per is an attempt to provide a new model based on an
adaptive rule-driven device – namely, an adaptive au-
tomaton – that escalates on demand according to the
current scenario, reducing the effects of data sparsity
and handling queries in polinomial time in order to rec-
ommend context-relevant resources. Such features are
desirable specially when dealing with a huge amount
of raw data.

3 The recommendation engine
In this section, we present an adaptive rule-driven de-
vice being used to implement a recommendation en-
gine. We opted for an adaptive automaton [13, 14],
which consists of a traditional automaton as underly-
ing device with the addition of an adaptive mechanism,
as seen in Fig. 1; such mechanism allows the device to
change its own configuration on runtime by invoking
adaptive functions which can modify the underlying
set of rules.

(Q,Σ, P, q0, F)

finite automaton

adaptive mechanism

Figure 1: An adaptive automaton.

We provide a list of elements used in this section for
quick reference; refer to Table 1 for a complete descrip-
tion of the symbols used in the text.

Let us consider a set R of resources. A resource
might be any object relevant to a given context, e.g,
books in a bookstore or dishes in a restaurant. For our
example, the number of elements in R is fixed, although
it is easy to change this model in order to obtain a
recommendation engine that considers resources added
on-the-fly.

The adaptive automaton of our model has all avail-
able resources from R represented as states (QR sub-
set), but only related resources are connected through
transitions. Connection between two resources may
contain intermediate states indicating the strength of
the connection; the first occurrence of a pair of re-
sources triggers the adaptive mechanism which adds
transitions from one to another, and later occurrences
will increase this path by adding intermediate states.
The number of intermediate states in a path is used
to discover the best resource rj given ri. It is worth
noting that paths are established if and only if there
is an occurrence of pairs of resources, greatly reducing
the model size.

A resource ri may establish connection with an arbi-
trary number of other resources from R; such connec-
tions indicate possible trends from a group of people or
even describe mutual dealings among resources (set T
of special symbols). Our choice was modeling resource
connections not as a single two-way symbol but as a
pair of unidirectional ones, that is, a link between ri
and rj will result in both τ(ri,rj) and τ(rj ,ri). This is
helpful if we want to keep track of the path to follow
when analyzing possible recommendations or if we do
not want to consider commutativity between two re-
sources. For the scope of our paper, we are considering
that commutativity is allowed.

Fig. 2 represents the adaptive automaton M of our
recommendation engine. For illustration purposes, we
wrote a very simple automaton with just a pair of re-
sources, R = {r1, r2}, so the recommendation here
is quite obvious; nevertheless, it is enough for allow-
ing the observation of how the adaptive layer operates
when changing the automaton topology.

As seen in Fig. 2 (a), the initial state q0 has a loop for
each resource ri with an associated parametric adap-
tive function A with argument ri triggered before the
symbol consumption from the string of resource names.
The call to the adaptive function A(ri) (from set D
of adaptive functions) will evoke a new configuration,
with a transition from q0 targeting state qri consuming
the symbol ri. In our example, q0 has now a transition
to qr1 consuming r1 (Fig. 2 (b)); according to the input
string format, r2 is related to r1, so a call to A(r2) in
qr1 will evoke a new configuration (Fig. 2 (c)), where
these two resources are now related.

If a resource has not been considered in the recom-
mendation engine yet (Fig. 2 (a) with resource r1), a
modification is performed in the automaton topology in
order to accommodate the newly considered resource;
that is done through a call to the adaptive function A
(Algorithm 1), which will remove and add transitions
based on a set of elementary adaptive actions defined
in the adaptive function body. Similarly, if an uncon-
sidered resource is related to an existing one, not only
this resource must be considered, but the recommen-
dation path will also be built between them (as seen in
Fig. 2 (b) with the loop in qr1 , and the resulting recom-
mendation path in (c) between r1 and r2). Adaptive
function A takes one parameter denoting the resource
to be considered. The syntax used in the function body

2

DRAFT
Table 1: List of elements for quick reference.

Element Meaning Example

Q set of states Q = {q0, qpizza, qchips}
F ⊂ Q subset of accepting states F = {qpizza, qchips}
q0 ∈ Q initial state —

R set of resources R = {pizza, chips}
QR ⊂ Q subset of states associated with resources,

|QR| = |R|
QR = {qpizza, qchips}

T set of special symbols representing links amongst
resources, |T | = |R|!/(|R|−2)!

T = {τ(pizza,chips), τ(chips,pizza)}

τ(ri,rj) ∈ T link between two resources ri and rj , with
ri, rj ∈ R, i, j ∈ N, i 6= j

τ(pizza,chips)

D set of adaptive functions D = {A,B}
Σ input alphabet Σ = {α,pizza, chips}
α resource pair delimiter —

P P : D ∪ {ε} ×Q× Σ 7→ Q× Σ ∪ {ε} ×D ∪ {ε},
mapping relation

P = {(A(pizza), q0, pizza) 7→
(q0, ε, ε), (A(chips), q0, chips) 7→
(q0, ε, ε)}

A(r)· adaptive function A ∈ D with argument ri trig-
gered before the symbol consumption

—

·B(q, x, z) adaptive function B ∈ D with arguments q, x, z
triggered after the symbol consumption

—

fQ : R 7→ QR function that takes a resource ri ∈ R and returns
its associated state qri ∈ QR

fQ(pizza) 7→ qpizza

G : QR 7→ R output relation that maps each state qri ∈ QR

representing a resource ri ∈ R into a resource
rj ∈ R− {ri}

G(pizza) 7→ chips

arg maxA ⊆ R ymax = max(x,y)∈A y, then
arg maxA = {x ∈ R | (x, ymax) ∈ A} is the set of
x on which y is maximized

arg maxA = {(egg, 7), (pizza, 5),
(bacon, 7), (spam, 6)} =
{egg, bacon}

?(a, b, c)→
(d, e, f)

rule-searching elementary adaptive action that
searches P for rules matching the given pattern
(a, f ⊆ D ∪ {ε}, b, d ⊆ Q, c ⊆ Σ, e ⊆ Σ ∪ {ε})

—

−(a, b, c)→
(d, e, f)

rule-erasing elementary adaptive action that re-
moves rules matching the given pattern from P
(a, f ⊆ D ∪ {ε}, b, d ⊆ Q, c ⊆ Σ, e ⊆ Σ ∪ {ε})

—

+(a, b, c)→
(d, e, f)

rule-inserting elementary adaptive action that
adds rules with a specified pattern to
P (a, f ⊆ D ∪ {ε}, b, d ⊆ Q, c ⊆ Σ, e ⊆ Σ ∪ {ε})

—

3

DRAFT
q0

qr1

qr2

r1,A(r1)·

r2,A(r2)·

(a) The initial topology of the
adaptive automaton M for a
couple of resources. Let us rec-
ognize w = r1r2, that is, two
related resources.

q0

qr1

qr2r2,A(r2)·

r1

α

r2,A(r2)·

(b) The new topology of the
adaptive automaton M after rec-
ognizing r1. So far, no resource
is related to r1. Now let us rec-
ognize r2.

q0

qr1

qr2

r1

r2

α

α

τ (
r
1
,r

2
)

τ (
r
2
,r

1
)

r2,
·B(qr1 ,
τ(r1,r2),
τ(r2,r1))

r1,
·B(qr2 ,
τ(r2,r1),
τ(r1,r2))

(c) The new topology of the adaptive automaton
M after recognizing a pair of resources r1r2, now
related.

Figure 2: An adaptive automatonM being used as a recommendation engine for a set of resources R containing
r1 and r2.

and a complete description of elementary adaptative
actions can be found in [13].

Algorithm 1 Adaptive function A(r)

Summary: this function modifies the automaton topology
in order to accommodate the newly considered resource r;
it creates recommendation paths between r and each con-
sidered resource; at last, it removes the selected transition
from the mapping.

adaptive function A(r)
variables: ?v, ?x, ?y, ?z
−(q0, r)→ q0,A(r)·
+(q0, r)→ fQ(r)
?(q0, ?v)→?x
+(fQ(r), ?v)→ fQ(?v), ·B(?v, τ(r,?v), τ(?v,r))
+(fQ(?v), r)→ fQ(r), ·B(r, τ(?v,r), τ(r,?v))
−(fQ(r), r)→ fQ(r), ·B(r, τ(r,r), τ(r,r))
+(fQ(r), τ(r,?v))→ fQ(?v)
+(fQ(?v), τ(?v,r))→ fQ(r)
−(fQ(r), τ(r,r))→ fQ(r)
?(q0, ?y)→ q0,A(?y)·
+(fQ(?v), ?y)→ fQ(?v),A(?y)·
−(fQ(?v), r)→ fQ(?v),A(r)·
?(fQ(?v), ?z)→ fQ(?v),A(?z)·
+(fQ(r), ?z)→ fQ(r),A(?z)
+(fQ(r), α)→ q0

end adaptive function

If both resources ri and rj have been considered in
the engine before, there will be a transition from q0
to qri consuming ri and from qri to qrj consuming rj
with a call to the adaptive function B. Adaptive func-
tion B increments the number of transitions and in-
termediate states between two resources by adding a
newly inserted state (chosen by a generator g? in the
function body) and modifying existing transitions in
order to accommodate such new element in the recom-
mendation path. The function takes three parameters
denoting the source state followed by two link symbols
τ1, τ2 ∈ T .

An example of how adaptive function B modifies the

Algorithm 2 Adaptive function B(q, τ1, τ2)

Summary: this function adds a new element in the rec-
ommendation path between two resources. The higher the
number of elements, the stronger the path.

adaptive function B(q, τ1, τ2)
variables: ?v
generators: g?
?(q, τ1)→?v
−(q, τ1)→?v
−(?v, τ2)→ q
+(q, τ1)→ g?

+(g?, τ2)→ q
+(g?, τ1)→?v
+(?v, τ2)→ g?

end adaptive function

automaton topology is illustrated in Fig. 3. For sim-
plicity, only relevant parts of the automaton are shown.

As seen in Fig. 3, B inserts the new state q1 between
ri and qj , rearranges existing transitions and adds new
ones. When any transition holding an associated adap-
tive function B is executed, the corresponding recom-
mendation path will increase in number of intermediate
states.

Resources ri and rj are connected via a recommen-
dation path, composed by their associated states, qri
and qrj , and an intermediate state qk with transitions
consuming τ(ri,rj) and τ(rj ,ri). Intermediate states act
as a counter. At the beginning, this path contains no
intermediate state from qri to qrj ; resources are di-
rectly connected through transitions consuming τ(ri,rj)
and τ(rj ,ri), as seen in Fig. 2 (c); this is by design and
indicates the strength of the connection between these
resources. The number of intermediate states in the
path from qri to qrj will be used as a parameter for
deciding whether rj should be recommended given ri;
the more states, the higher chance for rj to be selected.
If we go the other way in the path, that is, from qrj to
qri , the decision changes to whether ri should be rec-
ommended given qj . Alternatively, recommendation

4

DRAFT
qri qrj

τ(ri,rj)

τ(rj ,ri)

rj , ·B(qri , τ(ri,rj), τ(rj ,ri))

ri, ·B(qrj , τ(rj ,ri), τ(ri,rj))

A transition (qri , rj) → qrj will trigger an adap-
tive function B that will create a new state in the
recommendation path between qri and qrj .

qri q1 qrj
τ(ri,rj)

τ(rj ,ri)

τ(ri,rj)

τ(rj ,ri)

rj ,B(qri , τ(ri,rj), τ(rj ,ri))

ri,B(qrj , τ(rj ,ri), τ(ri,rj))

The new automaton topology after the execution of
the adaptive function B, with a new state q2 added
in the recommendation path between qri and qrj .

Figure 3: An example of the adaptive function B being triggered during the transition from qri to qrj consuming
rj , resulting on adding a new state q1 and a couple of new transitions.

paths could be represented by a global counter associ-
ated with each pair of resources and an adaptive func-
tion that triggers an increment operation on demand.

It is important to observe that ri and rj share the
same recommendation path (but of course, not the
same transitions as qri reaches qrj through τ(ri,rj) and
qrj reaches qri through τ(rj ,ri)), so our model may end
up with at most

(|R|
2

)
recommendation paths, one for

each {ri, rj} subset, considering that all resources are
related and thus connected. If commutativity does
not hold between a pair of resources, every ordered
pair (ri, rj) should have its own recommendation path,
thus, the maximum number of recommendation paths
should be |T |; the link set T already offers symbols to
support non-shared recommendation paths, if this rule
is chosen.

The adaptive automaton M of our recommen-
dation engine accepts strings over the alphabet
Σ = R ∪ T ∪ {α}, w ∈ Σ∗, with L(M) = {w ∈ Σ∗ |
w = ri|rirj(αrirj)∗, ri, rj ∈ R, ri 6= rj}, in one of the
forms presented as follows.

The first form, w ∈ R, denotes w as a single re-
source for which we want to get a recommendation.
Here the idea is to submit w to our automaton and get
an output string w′ ∈ R ∪ {ε}, with w′ 6= w. For ex-
ample, with R = {egg, bacon, spam}, and submitting
w = egg to the automaton, we should get an output
string w′ = bacon, meaning that bacon, based on our
recommendation engine, is a good side dish for eggs.
The occurrence of ε in the output string w′ indicates
that no recommendation was found based on the input
string w. For practical purposes, the output relation
always returns a resource ri ∈ R, but that is a domain-
specific decision.

The second form, w = rirj(αrkrl)
∗, with

ri, rj , rk, rl ∈ R, ri 6= rj , α ∈ Σ and rk 6= rl, de-
notes that w has at least one pair of resources, or a
list of pairs separated by a delimiter α. A string in
this form leads the automaton to change its topology
according to the frequency of each pair of resources;
modifications are possible due to the adaptive mecha-
nism action triggered by a call to a parametric adaptive

function B associated to specific transitions.
The string w is built from a subset of resources

R′ ⊆ R, |R′| ≥ 2, in a transaction, for example, a
basket containing grocery items in a purchase or a café
tab. In order to build a proper string to denote oc-
currences of each pair of resources from R′, we need to
obtain all subsets of two elements of R′, that is, P2(R′),
and separate them by using a special symbol α. Algo-
rithm 3 illustrates the building process of the string w
from a subset R′ ⊆ R. For instance, let us consider a
set of resources R = {egg, sausage, bacon, spam} from
a café menu and R′ = {egg, bacon, spam} as a break-
fast order; a call to Build(R′) would give us the string
w = 〈egg〉〈spam〉α〈egg〉〈bacon〉α〈bacon〉〈spam〉.

Algorithm 3 Building string w of shape rirj(αrkrl)∗
from R′ ⊆ R, |R′| ≥ 2

Summary: this procedure builds an input string w to be rec-
ognized by the adaptive automaton of our recommendation
engine from a subset R′ of resources; it basically iterates
through all subsets of two elements of R′ and concatenates
the intermediate results with the resource pair delimiter.

procedure Build(R′)
w ← ε
R′′ ← P2(R′)
X ← r ∈ R′′
for x ∈ X do

w ← w · x
end for
R′′ ← R′′ −X
if R′′ 6= ∅ then

for X ′ ∈ R′′ do
w ← w · 〈α〉
for x′ ∈ X ′ do

w ← w · x′
end for

end for
end if
return w

end procedure

Special symbol α plays the role of a pair separator

5

DRAFT

when building the input string w in the second form;
since all transitions consuming this symbol target the
initial state, the automaton behaves exactly the same
with all pairs. The set of accepting states F is the
union of the set of states QR representing resources
from R, F = QR, F ⊂ Q.

One of the goals of the proposed recommendation
engine is to submit an input string w in the first form,
that is, w ∈ R, to our automaton and get an output
string w′ ∈ R ∪ {ε}, with w′ 6= w, as a recommended
resource. In order to achieve that, we need to define
an output relation G associated to each state qr ∈ QR.

In order to determine which resource rj to recom-
mend in terms of resource ri, we rely on counting the
number of intermediate states for every recommenda-
tion path from ri as a metric to indicate a suitable
option. The number of intermediate states between
two resources rk and rl (dynamically added by adap-
tive function B) gives us the occurrences of the pair
{rk, rl}; the higher that number, the more frequent
the pair is, and thus, resource rl can be a recommen-
dation for resource rk and vice versa. Alternately, an
approach using global counters would simplify the com-
parison step since all values are directly available.

In order to count the intermediate states between ri
and rj and choose the longest recommendation path,
we present a procedure Recommend(r) that takes a
resource r and return its best recommendation, accord-
ing to the highest pair frequency; this is done by in-
specting the current automaton shape. The algorithm
relies on counting specific transitions, so the number
of intermediate states from ri to rj is t − 1, with t
being the number of transitions in T which consume
τ(ri,rj). Algorithm 4 illustrates the steps taken by such
procedure in order to get the most suitable resource.

Algorithm 4 Obtaining the best resource as recom-
mendation for r ∈ R
Summary: this procedure that takes a resource r and return
its best recommendation, according to the highest pair fre-
quency; this is done by counting specific intermediate states

procedure Recommend(r)
X ← {}
for ri ∈ R, ri 6= r do

X ′ ← {(q′, τr,ri)→ q′′ ∈ P | q′, q′′ ∈ Q}
X ← X ∪ {(ri, |X ′|)}

end for
X ′′ ← arg maxX ′

return x ∈ X ′′
end procedure

Using the procedure presented in Algorithm 4, the
output relation Gmaps every state qri ∈ QR represent-
ing resource ri into a call to Recommend(qri) which
returns a resource rj 6= ri as recommendation; in other
words, we get G = {(qr) → Recommend(qr) | qr ∈
QR},

4 Experiments and discussions

We developed two experiments in order to illus-
trate an evaluation of the recommendation engine
proposed in this paper. First, we generated a
data sample from a set R of 5 resources, R =
{egg, sausage, bacon, beans, spam}, simulating several
breakfast orders in a café; the data sample size ranged
from 10 to 1000 entries. It is important to mention that
orders with just one item were discarded since you can-
not establish a connection with other items in the same
order.
First experiment — The first experiment consisted
of checking the hits of our recommendation engine [#1]
compared to traditional association rule algorithms,
namely Apriori [#2] [2], PredictiveApriori [#3] [18],
FPGrowth [#4] [10] and Tertius [#5] [7]. For this ex-
periment, we used a sample size of 100 entries. All al-
gorithms were executed in a 64-bit Linux environment
with the help of the WEKA data mining software [9].
The results are presented in Table 2. The parameters
for each algorithm were automatically set by WEKA.

Table 2: Hits in the first experiment.
1 2 3 4 5

egg bacon – spam – –
sausage egg – egg – egg
bacon spam spam spam – beans
beans bacon – bacon – bacon
spam bacon – beans – bacon

1. Our model, 2. Apriori, 3. PredictiveApriori,
4. FPGrowth, 5. Tertius

According to Table 2, Apriori and FPGrowth could
not provide valid association rules based on the sam-
ple data (note that some rules are not valid in our
context and were discarded, for example, if a customer
doesn’t order bacon, he won’t order spam; we want to
recommend resources solely based on positive input);
by increasing the sample size, both algorithms start
converging to the rules obtained from our model. Pre-
dictiveApriori and Tertius had a very similar output,
although the latter had one miss when trying to extract
a rule for an certain order.

It is also worth noting that the number of resources
in R plays an important role in our experiment, since
traditional association rule algorithms extract rules
based on the power set of R, that is, P(R), and this
set might become huge with many elements in R. Our
model simply tries to establish rules based on one re-
source in terms of another, using just all subsets of two
elements of R, that is, P2(R), which is quite sufficient
for our domain-specific problem.

In general, the results were significant since the de-
sign of our model employs an optimized straightfor-
ward technique (namely, frequency analysis) and at
some extent the outcome came very close to more so-
phisticated algorithms such as the ones used in the ex-
periment. We were able to extract meaningful connec-

6

DRAFT

tions at a low cost, minimizing the cold start problem.
The key point for a recommendation context is that
suboptimal answers are also valid, and thus a more bal-
anced model in terms of hits and performance might
be an interesting approach.
Second experiment — The second experiment con-
sisted of measuring the execution time of our recom-
mendation engine compared to traditional association
rule algorithms (the ones used in the first experiment).
We tested the performance of each approach with the
data sample size ranging from 10 to 1000 entries, for
1000 times.; the overview of the second experiment is
in Table 3.

Table 3: Execution time in seconds of all approaches
in the second experiment, with the data sample size
ranging from 10 to 1000 entries. Values are represented
in scientific notation, ×10−3.

Size 1 2 3 4 5

10 0.2 3.5 72.1 0.1 11.2
50 0.7 3.6 203.0 2.5 16.2
100 1.8 3.9 336.0 1.4 29.2
250 2.3 4.2 454.5 3.8 40.9
500 4.3 8.7 821.9 6.3 120.1
750 6.4 16.8 1187.6 9.5 180.6
1000 8.7 18.3 1110.4 9.1 178.6

1. Our model, 2. Apriori, 3. PredictiveApriori,
4. FPGrowth, 5. Tertius

According to Table 3, and based on data from Ta-
ble 2, the algorithms with better predictions were also
the more time-consuming ones. This is quite under-
standable, since several calculi are employed in order
to get the best possible association rule. We can ob-
serve that our model had one the best performances
amongst all approaches and still with a significant pre-
diction rate. Perhaps the most important fact from
this experiment is that our model does not suffer from
data sparsity, since resource connections are only es-
tablished when needed.

5 Conclusions
In this paper, we presented a recommendation en-
gine that uses an ad-hoc adaptive automaton specially
designed as a lightweight alternative to existing ap-
proaches on resource recommendation. The model is
compact, efficient and offers suboptimal answers which
are good enough for several specific contexts [11].

As a result of this work, we have achieved a recom-
mendation engine based on a formalism that can be
easily modified or extended in order to cover several
contexts [6]. We have reached an interesting balance
between performance and prediction, as seen in the two
experiments in Section 4, with no significant effects of
data sparsity and cold start. As future work, an addi-
tional adaptive function C can be used to modify rec-
ommendation paths on higher levels (for example, ri
to rj through rk).

The use of an adaptive rule-driven device provides
simplicity and representation power; the recommenda-
tion engine shown here has a wide scope and may also
be used along with usual artificial intelligence tech-
niques, exploring the strongest points of both sides,
and achieving good results when solving real world
problems[14, 6].

References
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: a survey of
the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineer-
ing, 17:734–749, 2005.

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proceedings of the
20th International Conference on Very Large Data
Bases, pages 487–499, 1994.

[3] J. Basiri, A. Shakery, B. Moshiri, and M.Z.
Hayat. Alleviating the cold-start problem of rec-
ommender systems using a new hybrid approach.
In 5th International Symposium on Telecommuni-
cations, pages 962–967, 2010.

[4] F. Cacheda, V. Carneiro, D. Fernández, and
V. Formoso. Comparison of collaborative filter-
ing algorithms: Limitations of current techniques
and proposals for scalable, high-performance rec-
ommender systems. ACM Transactions on the
Web, 5:2:1–2:33, 2011.

[5] P. R. M. Cereda, R. A. Gotardo, and S. D.
Zorzo. Resource recommendation using adaptive
automaton. In 16th International Conference on
Systems, Signals and Image Processing, pages 1–4,
2009.

[6] P. R. M. Cereda and J. José Neto. Adaptive data
mining: Preliminary studies. IEEE Latin America
Transactions, 12(7):1258–1270, 2014.

[7] P. Flach and N. Lachiche. Confirmation-guided
discovery of first-order rules with Tertius. Ma-
chine Learning, 42:61–95, 1999.

[8] R. A. Gotardo, E. R. Hruschka Júnior, S. D.
Zorzo, and P. R. M. Cereda. Approach to cold-
start problem in recommender systems in the con-
text of web-based education. In Proceedings of the
12th International Conference on Machine Learn-
ing and Applications (ICMLA), 2013, volume 2,
pages 543–548, Miami, FL, 2013.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. Witten. The WEKA data
mining software: an update. SIGKDD Explo-
rations, 11(1), 2009.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In Pro-
ceedings of the 2000 ACM–SIGMID International

7

DRAFT

Conference on Management of Data, pages 1–12,
2000.

[11] Matthew Hatem and Wheeler Ruml. Bounded
suboptimal search in linear space: New results.
In Proceedings of the Seventh Annual Symposium
on Combinatorial Search, pages 89–96, Prague,
Czech Republic, 2014. AAAI Press.

[12] Zan Huang, Wingyan Chung, and Hsinchun Chen.
A graph model for e-commerce recommender sys-
tems. Journal of the American Society for in-
formation Science and Technology, 55(3):259–274,
2004.

[13] J. José Neto. Adaptive automata for context-
dependent languages. SIGPLAN Notices,
29(9):115–124, 1994.

[14] J. José Neto. Adaptive rule-driven devices: gen-
eral formulation and case study. In International
Conference on Implementation and Application of
Automata, 2001.

[15] P. Lops, M. Gemmis, and G. Semeraro. Content-
based recommender systems: State of the art and
trends. Recommender Systems Handbook, 1:73–
105, 2011.

[16] P. Resnick and H. Varian. Recommender systems.
Communications of the ACM, 40:55–58, 1997.

[17] R. L. A. Rocha and J. José Neto. Autômato
adaptativo, limites e complexidade em compara-
ção com a Máquina de Turing. In Proceedings of
the Second Congress of Logic Applied to Technol-
ogy, pages 33–48, 2000.

[18] T. Scheffer. Finding association rules that trade
support optimally against confidence. In 5th Eu-
ropean Conference on Principles of Data Mining
and Knowledge Discovery, pages 424–435, 2001.

[19] X. Su and T. M. Khoshgoftaar. A survey of collab-
orative filtering techniques. Advances in Artificial
Intelligence, 2009:4:2–4:2, 2009.

[20] M. E. Yahia and E. E. Murtada. A new approach
for evaluation of data mining techniques. IJCSI
International Journal of Computer Science Issues,
7:181–186, 2010.

8

