Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 109C (2017) 1158-1163

www.elsevier.com/locate/procedia

International Workshop on Adaptive Technology
(WAT 2017)

A middleware architecture for adaptive devices

Paulo Roberto Massa Cereda®*, Joao José€ Neto?

“Escola Politécnica, Departamento de Engenharia de Computagdo e Sistemas Digitais, Universidade de Sao Paulo
Av. Prof. Luciano Gualberto, s/n, Travessa 3, 158, CEP: 05508-900 — Sdo Paulo, SP — Brasil

Abstract

The intuitive notion of an adaptive layer enclosing an underlying rule-driven device, thus making it adaptive, does not specify
how coupling between the underlying rule-driven device and the adaptive mechanism should happen from an architectural point
of view. In this paper, as a means to address component heterogeneity and exposure, we present a middleware architecture for
adaptive devices, acting as a support layer between the underlying rule-driven device and the adaptive mechanism. The proposed
middleware spontaneously provides aggregation and composition services to both components, making them interoperable and
working as a single cohesive unit.

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: adaptive devices, middleware, adaptivity

1. Introduction

Adaptive rule-driven devices are formally defined as a tuple containing the underlying, potentially non-adaptive,
rule-driven device, and the adaptive mechanism!. The former provides the current contextual behaviour, whilst the
latter empowers modifications to such behaviour over time, in order to accommodate planned yet unexpected con-
texts. This formulation creates the intuitive notion of an adaptive layer enclosing an underlying rule-driven device,
thus making it adaptive, as seen in Figure 1.

This intuitive notion, however, does not specify how coupling between the underlying rule-driven device and the
adaptive mechanism should happen from an architectural point of view. Rule-driven devices vary greatly in their own
formulation, leading to a heterogeneous environment. Furthermore, a device should not expose its inner workings to
the adaptive mechanism beyond the rule set. A common protocol must exist in order to make components visible and
understandable to each other, yet without breaking encapsulation.

In this paper, as a means to address component heterogeneity and exposure, we present a middleware architecture
for adaptive devices, acting as a support layer between the underlying rule-driven device and the adaptive mechanism.
The proposed middleware spontaneously provides aggregation and composition services to both components, making

* Corresponding author, +55 11 3091-5583.
E-mail addresses: paulo.cereda@usp.br (Paulo Roberto Massa Cereda)., jjneto@usp.br (Jodo José Neto).

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.05.388

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.388&domain=pdf

Paulo Roberto Massa Cereda et al. / Procedia Computer Science 109C (2017) 1158-1163 1159

adaptive layer adaptive layer

rule-driven - rule-driven N adaptive rule-
device device driven device

Fig. 1. Adaptive layer enclosing an underlying rule-driven device, making it adaptive.

them interoperable and working as a single cohesive unit. Once the protocol is correctly established, the middleware
becomes transparent to the adaptive device.

The remainder of this paper is organized as follows: Section 2 formally introduces the concept of an adaptive rule-
driven device, including the underlying rule-driven device and the adaptive mechanism. The middleware architecture
is presented in Section 3, with a general overview and further details regarding the operation stages. At last, final
remarks, as well as proposals for further studies and directions, are presented in Section 4.

2. Initial concepts

A general adaptive rule-driven device consists of an underlying, potentially non-adaptive, rule-driven device en-
hanced with an extension, namely the adaptive mechanism, that allows modifications on the current rule set over time,
based on history and input stimuli!. This section formally introduces the concept of adaptive rule-driven devices.

Definition 1 (rule-driven device). A rule-driven device is defined as ND = (C,NR, S, ¢y, A, NA), such that ND is a
rule-driven device, C is the set of all possible configurations, ¢y € C is the initial configuration, S is the set of all
possible input stimuli, € € §, A C C is the subset of all accepting configurations (respectively, F' = C — A is the subset
of all rejecting configurations), NA is the set of all possible output stimuli of ND as a side effect of rule applications,
€ € NA, and NR is the set of rules defining ND as a relation NR € C X § X C X NA. O

Definition 2 (rule). A rule r € NR is defined as r = (¢;, 5,¢j,2), ¢i,cj € C, s € § and z € NA, indicating that, as
response to a stimulus s, changes the current configuration ¢; to c;, processes s and generates z as output'. A rule
r = (¢, 5,¢j,2) is said to be compatible with the current configuration c if and only if ¢; = ¢ and s is either empty
or equals the current input stimulus; in this case, the application of a rule r moves the device to a configuration c;,
denoted by ¢; = ¢;, and adds z to the output stream. O

Definition 3 (acceptance of an input stimuli stream by a rule-driven device). An input stimuli stream w = wiw; ... wy,

wr €S —{el,k=1,...,n,n>0,is accepted by a device ND when ¢y ="' ¢; ="> ... =" ¢ (in short, ¢y =" ¢),
and ¢ € A. Respectively, w is rejected by ND when ¢ € F. The language described by a rule-driven device ND is
represented by L(ND) = {w € §* | ¢co =" ¢,c € A}. O

Definition 4 (adaptive rule-driven device). A rule-driven device AD = (NDy, AM), such that NDj) is a device and AM
is an adaptive mechanism, is said to be adaptive when, for all operation steps k > 0 (k is the value of an internal
counter T starting in zero and incremented by one each time a non-null adaptive action is executed), AD follows the
behaviour of an underlying device NDy. until the start of an operation step k+ 1 triggered by a non-null adaptive action,
modifying the current rule set; in short, the execution of a non-null adaptive action in an operation step k > 0 makes
the adaptive device AD evolve from an underlying device NDy, to NDy . O

Definition 5 (operation of an adaptive device). An adaptive device AD starts its operation in configuration ¢y, with
the initial format defined as ADy = (Cy, ARy, S, co, A, NA, BA,AA). In step k, an input stimulus move AD to the
next configuration and starts the operation step k + 1 if and only if a non-adaptive rule is executed; thus, being the
device AD in step k, with AD; = (Cy, ARy, S, ck, A, NA, BA,AA), the execution of a non-null adaptive action leads
to ADyy1 = (Ci41,AR41,S, Cie1, A, NA, BA, AA), in which AD = (NDy,AM) is an adaptive device with a starting
underlying device NDy and an adaptive mechanism AM, ND; is an underlying device of AD in an operation step

1160 Paulo Roberto Massa Cereda et al. / Procedia Computer Science 109C (2017) 1158-1163

k, NR; is the set of non-adaptive rules of NDy, Cy is the set of all possible configurations for ND in an operation
step k, ¢ € Cy is the starting configuration in an operation step k, S is the set of all possible input stimuli of AD,
A C C is the subset of accepting configurations (respectively, F = C — A is the subset of rejecting configurations),
BA and AA are sets of adaptive actions (both containing the null action, € € BA N AA), NA, with € € NA, is the set
of all output stimuli of AD as side effect of rule applications, ARy is the set of adaptive rules defined as a relation
AR; € BAXC XS XCxNAXAA, with AR defining the starting behaviour of AD, AR is the set of all possible adaptive
rules for AD, NR is the set of all possible underlying non-adaptive rules of AD, and AM is an adaptive mechanism,
AM C BA X NR x AA, to be applied in an operation step k for each rule in NR; C NR. O

Definition 6 (adaptive rules). Adaptive rules ar € ARy are defined as ar = (ba,c;, s, ¢}, z, aa) indicating that, as
response to an input stimulus s € S, ar initially executes the prior adaptive action ba € BA; the execution of ba is
cancelled if this action removes ar from ARy; otherwise, the underlying non-adaptive rule nr = (c;, s, ¢, 2), nr € NRy
is applied and, finally, the post adaptive action aa € AA is applied'. O

Definition 7 (adaptive function). Adaptive actions may be defined as abstractions named adaptive functions, similar
to function calls in programming languages!. The specification of an adaptive function must include the following
elements: (a) a symbolic name, (b) formal parameters which will refer to values supplied as arguments, (c¢) variables
which will hold values of calls of elementary adaptive actions of inspection, (d) generators that refer to new value
references on each usage, and (e) the body of the function itself. 0

Definition 8 (elementary adaptive actions). Three types of elementary adaptive actions are defined in order to perform
tests on the rule set or modify existing rules, namely:

e inspection: the elementary action does not modify the current rule set, but allows inspection on such set and
querying rules that match a certain pattern. It employs the form ?(pattern).

e removal: the elementary action removes rules that match a certain pattern from the current rule set. It employs
the form —(pattern). If no rule matches the pattern, nothing is done.

e insertion: the elementary action adds a rule that match a certain pattern to the rule set. It employs the form
+(pattern). If the rule already exists in the rule set, nothing is done.

Such elementary adaptive actions may be used in the body of an adaptive function, including rule patterns that use
formal parameters, variables and generators available in the function scope. O

Adaptivity poses as a convenient abstraction mechanism??, as it offers a compact and better organized model

representation. Each underlying device covers a specific context at a time>, whilst evolutions reflect device fitting
towards incremental problem solving 6273,

3. Middleware for adaptive devices

In general, a middleware is defined as an enabling technology for the development, execution and interaction of
applications®, represented as an abstraction layer standing between components'®!!, handling functionalities and
providing support'2%!1. Our middleware aims at providing aggregation and composition services to the underlying
rule-driven device and the adaptive mechanism, such that the resulting adaptive rule-driven device fully complies with
its formal definition. Four key aspects are taken into consideration:

1. Discoverability: components need to be located and accessed before being composed®. The middleware must
monitor the environment for newly deployed components and requests a special token containing the compo-
nent’s format. This format acts like a driver, specifying the component’s interface as a means to restrict access to
its inner workings.

2. Context awareness: the middleware must be aware in terms of attachment and detachment of components
such that an adaptive device can be transparently composed and decomposed, once both underlying rule-driven
device and adaptive mechanism are functional.

9,10
9

Paulo Roberto Massa Cereda et al. / Procedia Computer Science 109C (2017) 1158-1163 1161

3. Spontaneous management: this aspect concerns the ability of such middleware to compose components based on
their formats independently of explicit requests*!2. Once a component is discovered, it automatically becomes
eligible to compose an adaptive device.

4. Autonomous management: the middleware must control and manage its own services with little to no human
intervention'!, making it transparent and pervasive to the environment®. Additionally, the support layer must be
as much fault tolerant as possible '3!415.

The middleware architecture for adaptive devices is introduced in Figure 2. Observe that the middleware contains
the minimum set of operations needed to establish a common protocol between the underlying rule-driven device
and the adaptive mechanism. Once such protocol is correctly established, the middleware becomes transparent to the
resulting adaptive device.

underlying P

Adaptive device AD
- -~ -~ --- -/ - -7 - - - - - -7/ /-7 - ---------T-T-T-T---T-T----~-~-=" A
: 1
} adaptive action R :
l mechanism AM set A N AN |
I AN AN |
‘ N N N |
| \ .
| Tequest format \ \ |
t format . !
! pAM) : A
ggregate composite | [iET i) | !
! NN I
) middleware 1 function function | |1/ 0! |
| . middleware ———————— - - ‘ ¥ ¥ A
N e e e e e e e | | e | !
1 format EDNCONED) | |
, request orma i Sl |
i format P(NDy))/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Fig. 2. Middleware architecture for adaptive devices.

According to Figure 2, the middleware detects the attachment of an underlying rule-driven device and the adaptive
mechanism and requests both formats. Once the formats are retrieved, the middleware provides an aggregate function
and establishes a common protocol between the components. Additionally, a composite function takes the rule and
action sets from the underlying device and adaptive mechanism, respectively, based on their formats, and provides a
merged set, representing the extended rule set for the newly created adaptive device. The middleware then becomes
transparent and acts only as a background monitor for potential structural updates or detachments.

3.1. Requests and formats

The first stage covers component discovery and format requisitions. The middleware monitors the environment for
newly deployed components; once a component is found, the middleware asks for a format, i.e, a description on the
component’s inner workings and its corresponding interface. Additionally, the format also indicates the component
type, namely a device or adaptive mechanism. The concept of a format enforces encapsulation, as nothing beyond
specification is exposed externally.

Definition 9 (format function). Let there be a format function p: ND al yAM A Y AD! v ®@, such that ND!, ApM !
and AD“" are enumerable sets of all possible non-adaptive rule-driven devices, adaptive mechanisms and adaptive

1162 Paulo Roberto Massa Cereda et al. / Procedia Computer Science 109C (2017) 1158-1163

rule-driven devices, and @ is the set of all formats, i.e, the format function takes any device or adaptive mechanism
and returns its corresponding format. O

In order to become eligible for aggregation and composition, a component has to provide its own format function
p, such that format requests from the middleware are correctly answered. It is important to observe that a resulting
adaptive rule-driven device is also eligible for aggregation and composition in a higher abstraction level and thus
must provide a format as well; a sensible approach would be p(AD) = p(AM) for AD = (ND,AM), i.e, an adaptive
device would only expose its immediate adaptive mechanism, as a means to preserve a layered hierarchy for multilevel
adaptivity '%!7. However, other approaches are also valid, as the format dictates the device exposure.

3.2. Aggregation and bridging

The second stage covers format aggregation and component bridging. Once the first stage is completed, as for-
mat requests to newly attached components (namely, a rule-driven device and an adaptive mechanism) are correctly
answered and gathered, the middleware applies an aggregate function on both formats in order to obtain a new for-
mat based on both interfaces. The aggregate format dictates how the inner workings of both components should be
exposed, as a means to specify information exchange and usage. A bridging protocol is then established by the mid-
dleware (represented by a double-headed black arrow in Figure 2), such that both components are made interoperable
and working as a single cohesive unit.

Definition 10 (aggregate function). Let there be an aggregate function 6: ® X ® — @, such that ® is the set of all
formats, i.e, the aggregate function takes any two valid formats (namely, applications of p on a rule-driven device and
an adaptive mechanism) and returns an aggregate format based on both interfaces. O

The bridging protocol aims at solving the heterogeneity problem, as it allows direct, cohesive and coherent infor-
mation exchange between the underlying rule-driven device and the adaptive mechanism, based on the aggregation of
their corresponding formats. Observe that the established protocol covers all functionalities available in the surround-
ings while ensuring proper component encapsulation, since the formats (including resulting formats from applications
of) explicitly specify the exposure level of their inner workings.

3.3. Set composition

The third and last stage provides set composition. Aside from establishing a direct information exchange between
components, the bridging protocol applies a composite function on the rule and action sets from the underlying device
and adaptive mechanism, respectively, in order to obtain an extended rule set for the newly created adaptive device.
The resulting extended rule set aims at being adherent to the theory presented in Section 2.

Definition 11 (composite function). Let there be a composite function @ : R x A s (A U {u} x R x A U {u}),
such that R and A" are enumerable sets of all possible sets of rules and actions from the underlying rule-driven
device and adaptive mechanism, respectively, and u is a null adaptive action. i.e, the composite function takes both
rule and action sets and returns an extended rule set decorated with prior and post adaptive actions (potentially none,
as indicated by the null adaptive action u). O

The extended rule set is decorated with prior and post adaptive actions, as implied by the theory?!, including
the null adaptive action y. The composite function provides a straightforward representation of both contextual and
adaptive behaviours, simplifying queries and other operations. It is important to observe that the resulting set is
a view !8192021 j e the composing elements are simply pointers to their original references; such references are
accessible through the bridging protocol. Once the view is properly defined, the middleware becomes transparent and
acts only as a background monitor for potential structural updates or detachments, repeating stages whenever needed.

4. Final remarks

This paper presented a middleware architecture for adaptive devices, acting as a support layer between the under-
lying rule-driven device and the adaptive mechanism, as a means to address component heterogeneity and exposure.

Paulo Roberto Massa Cereda et al. / Procedia Computer Science 109C (2017) 1158-1163 1163

The proposed middleware aims at being adherent to the theory, as well as posing itself as a sensible approach to a
cohesive, coherent and generic implementation model. Operations needed to establish a common protocol between
the underlying rule-driven device and the adaptive mechanism were kept to a minimum. The middleware design
presented in Figure 2 can be further improved in order to cover a broader number of domains and scenarios.

There is an ongoing research on providing a middleware implementation using the Java programming language.
We are investigating existing frameworks as basis for format specification and component interoperability, such as a
subset of projects from the Apache Foundation, namely Avro!, Mina?, Felix® and Karaf*. Preliminary results look
promising, although there are challenges regarding fault tolerant interoperability. Further studies are needed.

A middleware approach presents as a viable solution to address how coupling between the underlying rule-driven
device and the adaptive mechanism should happen from an architectural point of view, as well as a proper handling of
component heterogeneity and exposure. Additionally, the architecture may be extended through additional modules
in order to provide new features, such as persistence, security and quality of service, at almost no sensible cost.

References

1. J. José Neto, Adaptive rule-driven devices: general formulation and case study, in: International Conference on Implementation and Appli-
cation of Automata, 2001.

2. J. José Neto, Adaptive automata for context -sensitive languages, SIGPLAN Notices 29 (9) (1994) 115-124.

3. P.R. M. Cereda, J. José Neto, Utilizando linguagens de programagcdo orientadas a objetos para codificar programas adaptativos, in: Memorias
do IX Workshop de Tecnologia Adaptativa — WTA 2015, Sao Paulo, 2015, pp. 2-9.

4. P.R. M. Cereda, J. José Neto, A recommendation engine based on adaptive automata, in: Proceedings of the 17th International Conference
on Enterprise Information Systems, Vol. 2, Barcelona, Spain, 2015, pp. 594-599.

5. P.R. M. Cereda, J. José Neto, Persisténcia em dispositivos adaptativos, in: Memoérias do VIII Workshop de Tecnologia Adaptativa — WTA
2014, 2014, pp. 120-125.

6. J.José Neto, Um levantamento da evolugio da adaptatividade e da tecnologia adaptativa, IEEE Latin America Transactions 5 (2007) 496-505.

7. J. Burg, S. Thomas, Computer science: From abstraction to invention, Tech. rep., Department of Computer Science, Wake Forest University
(2003).

8. C. A. Knoblock, Learning hierarchies of abstraction spaces, in: Proceedings of the Sixth International Workshop on Machine Learning,
Ithaca, NY, USA, 1989, pp. 241-245.

9. N.Ibrahim, F. Le Mouel, A survey on service composition middleware in pervasive environments, International Journal of Computer Science
Issues 1 (2009) 1-12.

10. E. Cecchet, G. Candea, A. Ailamaki, Middleware-based database replication: The gaps between theory and practice, in: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, ACM, Vancouver, Canada, 2008, pp. 739-752.

11. K.-D. Kim, P. R. Kumar, Networked Control Systems, Springer London, London, 2010, Ch. The Importance, Design and Implementation of
a Middleware for Networked Control Systems, pp. 1-29.

12. Q. T. D. Nguyen, Design and implementation of a distributed middleware for parallel execution of legacy enterprise applications, Master
thesis, Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada (2008).

13. Y. Yang, Y. Huang, X. Ma, Enabling context-awareness by predicate detection in asynchronous environments, IEEE Transactions on Com-
puters 65 (2) (2016) 522-534.

14. C. Xu, S. C. Cheung, W. K. Chan, C. Ye, Partial constraint checking for context consistency in pervasive computing, ACM Transactions on
Software Engineering and Methodology 19 (3) (2010) 9:1-9:61.

15. Y. Huang, Y. Yang, J. Cao, X. Ma, X. Tao, J. Lu, Runtime detection of the concurrency property in asynchronous pervasive computing
environments, IEEE Transactions on Parallel and Distributed Systems 23 (4) (2012) 744-750.

16. R. I Silva Filho, Uma nova formulacdo algébrica para o automato finito adaptativo de segunda ordem aplicada a um modelo de inferéncia
indutiva, Phd thesis, Escola Politécnica, Universidade de Sao Paulo, Sdo Paulo (2011).

17. R.L SilvaFilho, R. L. d. A. Rocha, R. H. G. Guiraldelli, Algorithmic Probability and Friends, Bayesian Prediction and Artificial Intelligence:
Papers from the Ray Solomonoff 85th Memorial Conference, Springer Berlin Heidelberg, 2013, Ch. Learning in the Limit: A Mutational and
Adaptive Approach, pp. 106-118.

18. R. Hull, J. Su, On the expressive power of database queries with intermediate types, Journal of Computer and System Sciences 43 (1) (1991)
219-267.

19. A. Chandra, D. Harel, Structure and complexity of relational queries, Journal of Computer and System Sciences 25 (1) (1982) 99-128.

20. M. Barr, Relational algebras, in: Reports of the Midwest Category Seminar IV, Vol. 137 of Lecture Notes in Mathematics, Springer, Berlin,
1970, pp. 39-55.

21. M. C. Bunge, Relative functor categories and categories of algebras, Journal of Algebra 11 (1) (1969) 64-101.

! Apache Avro is a data serialization system. Official page: https://avro.apache.org/

2 Apache Mina is a network application framework. Official page: https://mina.apache.org/

3 Apache Felix is a OSGi framework and service platform implementation. Official page: http://felix.apache.org/
4 Apache Karaf is a modern and polymorphic container. Official page: http://karaf .apache.org/

