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Abstract. An agent is defined as any device that perceives a certain
environment through stimuli and acts upon it as to achieve a certain
goal. There is a plethora of theories, architectures and languages in the
literature aiming at how much an agent may be improved at perform-
ing a task. However, the majority of them focuses on the internal agent
function itself instead of adopting a macroscopic, broader view of what
the term “intelligent” means in the long run. In this paper we take a
bio-inspired route and describe how the simplest reactive agent can be
boosted towards improvements at performing complex tasks by making
it mutable. We provide a mathematical framework to support such fea-
tures. Conceptually, the addition of a mutability layer does not break the
existing paradigms and allows hybrid approaches as a means to achieve
better results.

1 Introduction

Like other concepts of computation, specially the ones targeted in different areas,
the definition of what an agent is does not have universally accepted consensus
amongst the scientific community [11,1]. We mainly focus on Artificial Intelli-
gence and therefore adopt both definition and classification of agents as seen
in [25]. Russell and Norvig [25] define an agent simply as “something that acts”.
According to this definition, it is possible to glimpse a computer program as
an agent. However, there are scenarios in which a computational agent is ex-
pected to be rational and operate autonomously, perceiving its environment and
eventually being susceptible to change [11].

Change, in this context, is a disputable concept when discussing behavioral
actions [8,20]. In general, there is no clear indication of how such operation
affects the agent behavior for subsequent interactions with the environment be-
sides of a narrowed, error-proned local inspection [20]. A single misplaced action
might mutilate the agent function and permanently compromise the entire task
resolution. The more safety guards added to detect and avoid error propagation,
the more complex and unfeasible the agent will be in terms of maintenance and
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debugging [9]. Change might convey the idea of arbitrary actions taken from a
confined, limited perspective.

The phrase “survival of the fittest” was coined by Herbert Spencer [27] as
a way of describing the mechanism of natural selection, in which the biological
concept of fitness is defined as reproductive success. Similarly, we pinpoint mu-
tability as the key element for a bio-inspired agent model, such that the change
concept is, from now on, bound to evolving the entire entity and not only its
corresponding internal function [18].

Credited to theoretical physicist Stephen Hawking, the famous quote “intelli-
gence is the ability to adapt to change” points us towards a better, stricter term
to denote successive evolutions in an intelligent agent model: adaptation. How-
ever, it does not suffice being adaptable; as an agent inevitably has to operate
autonomously, model adaptations must be triggered from within as opposed to
explicit external calls [28]. Hence, the agent must be adaptive, in which the model
spontaneously evolves without external interference, based solely on perceptions,
stimuli and history. Biological entities are heavily based on such concept. In [3],
Beer argues that the Artificial Intelligence area has overlooked the importance
of adaptive behavior as a crucial substrate for intelligent behavior. Since the
adaptive model is expected to occasionally evolve, we chose the simplest, most
straightforward agent type from Russell and Norvig’s classification [25] as a proof
of concept to demonstrate that the complexity of an agent may be greatly re-
duced while retaining intelligent behavior. In this paper, we aim at providing an
architecture for such agents.

As to provide a consistent, coherent architecture for adaptive reactive agents,
we rely on a mathematical formalism proposed by José Neto [13,12]. This par-
ticular approach has the clear advantage of providing a macroscopic model view,
omitting superfluous details and characteristics [6]. Similar formalisms, such as
cellular automata and recursive adaptable grammars, are interesting alternatives
for designing bio-inspired models and may be employed as well.

2 Mathematical background

This section formally introduces the mathematical formalism proposed by José
Neto [13]. Observe that the theory relies on an adaptive mechanism enclosing a
non-adaptive rule-driven device, such that the latter may be enhanced in order
to accommodate an adaptive behavior while preserving its integrity and original
properties [12].

Definition 1 (rule-driven device). A rule-driven device is defined as ND =
(C,NR, S, c0, A,NA), such that ND is a rule-driven device, C is the set of all
possible configurations, c0 ∈ C is the initial configuration, S is the set of all
possible input stimuli, ǫ ∈ S, A ⊆ C is the subset of all accepting configurations
(respectively, F = C −A is the subset of all rejecting configurations), NA is the
set of all possible output stimuli of ND as a side effect of rule applications, ǫ ∈
NA, and NR is the set of rules defining ND as a relation NR ⊆ C×S×C×NA.
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Definition 2 (rule). A rule r ∈ NR is defined as r = (ci, s, cj , z), ci, cj ∈ C,
s ∈ S and z ∈ NA, indicating that, as response to a stimulus s, r changes the
current configuration ci to cj, processes s and generates z as output [13]. A rule
r = (ci, s, cj , z) is said to be compatible with the current configuration c if and
only if ci = c and s is either empty or equals the current input stimulus; in this
case, the application of a rule r moves the device to a configuration cj, denoted
by ci ⇒

s cj, and adds z to the output stream.

Definition 3 (acceptance of an input stimuli stream by a rule-driven
device). An input stimuli stream w = w1w2 . . . wn, wk ∈ S − {ǫ}, k = 1, . . . , n,
n ≥ 0, is accepted by a device ND when c0 ⇒w1 c1 ⇒w2 . . . ⇒wn c (in short,
c0 ⇒w c), and c ∈ A. Respectively, w is rejected by ND when c ∈ F . The
language described by a rule-driven device ND is represented by L(ND) = {w ∈
S∗ | c0 ⇒w c, c ∈ A}.

Definition 4 (adaptive rule-driven device). A rule-driven device AD =
(ND0,AM ), such that ND0 is a device and AM is an adaptive mechanism, is
said to be adaptive when, for all operation steps k ≥ 0 (k is the value of an
internal counter T starting in zero and incremented by one each time a non-null
adaptive action is executed), AD follows the behavior of an underlying device
NDk until the start of an operation step k + 1 triggered by a non-null adaptive
action, modifying the current rule set; in short, the execution of a non-null adap-
tive action in an operation step k ≥ 0 makes the adaptive device AD evolve from
an underlying device NDk to NDk+1.

Definition 5 (operation of an adaptive device). An adaptive device AD

starts its operation in configuration c0, with the initial format defined as AD0 =
(C0,AR0, S, c0, A,NA,BA,AA). In step k, an input stimulus move AD to the
next configuration and starts the operation step k + 1 if and only if a non-
adaptive rule is executed; thus, being the device AD in step k, with ADk =
(Ck,ARk, S, ck, A,NA,BA,AA), the execution of a non-null adaptive action leads
to ADk+1 = (Ck+1,ARk+1, S, ck+1, A,NA,BA,AA), in which AD = (ND0,AM )
is an adaptive device with a starting underlying device ND0 and an adaptive
mechanism AM , NDk is an underlying device of AD in an operation step k,
NRk is the set of non-adaptive rules of NDk, Ck is the set of all possible con-
figurations for ND in an operation step k, ck ∈ Ck is the starting configuration
in an operation step k, S is the set of all possible input stimuli of AD , A ⊆ C

is the subset of accepting configurations (respectively, F = C − A is the subset
of rejecting configurations), BA and AA are sets of adaptive actions (both con-
taining the null action, ǫ ∈ BA∩AA), NA, with ǫ ∈ NA, is the set of all output
stimuli of AD as side effect of rule applications, ARk is the set of adaptive rules
defined as a relation ARk ⊆ BA × C × S × C × NA × AA, with AR0 defining
the starting behavior of AD , AR is the set of all possible adaptive rules for AD ,
NR is the set of all possible underlying non-adaptive rules of AD , and AM is
an adaptive mechanism, AM ⊆ BA × NR × AA, to be applied in an operation
step k for each rule in NRk ⊆ NR.
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Definition 6 (adaptive rules). Adaptive rules ar ∈ ARk are defined as ar =
(ba, ci, s, cj , z, aa) indicating that, as response to an input stimulus s ∈ S, ar

initially executes the prior adaptive action ba ∈ BA; the execution of ba is can-
celed if this action removes ar from ARk; otherwise, the underlying non-adaptive
rule nr = (ci, s, cj , z), nr ∈ NRk is applied and, finally, the post adaptive action
aa ∈ AA is applied [13].

Definition 7 (adaptive function). Adaptive actions may be defined as ab-
stractions named adaptive functions, similar to function calls in programming
languages [13]. The specification of an adaptive function must include the fol-
lowing elements: (a) a symbolic name, (b) formal parameters which will refer to
values supplied as arguments, (c) variables which will hold values of applications
of elementary adaptive actions of inspection, (d) generators that refer to new
value references on each usage, and (e) the body of the function itself.

Definition 8 (elementary adaptive actions). Three types of elementary ac-
tions are defined in order to perform tests on the rule set or modify existing
rules, namely:

(i) inspection: the elementary action does not modify the current rule set, but
allows inspection on such set and querying rules that match a certain pattern.
It employs the form ?〈pattern〉.

(ii) removal: the elementary action removes rules that match a certain pattern
from the current rule set. It employs the form −〈pattern〉. If no rule matches
the pattern, nothing is done.

(iii) insertion: the elementary action adds a rule that match a certain pattern to
the rule set. It employs the form +〈pattern〉. If the rule already exists in the
rule set, nothing is done.

Such elementary adaptive actions may be used in the body of an adaptive
function, including rule patterns that use formal parameters, variables and gen-
erators available in the function scope.

According to Cereda and José Neto [6,5], adaptive devices offer conveniences
of a more compact model representation and better organization, as each under-
lying device covers a specific context at a time.

3 Adaptive reactive agents

An agent is defined as a device that perceives its environment through sensors
and acts on this environment through actuators [25]. Perception refers to the
perceptual stimuli of the agent and a sequence of perceptions consists of the
history of all perceptions so far. The choice of action may depend only on the
actual perception or sequence of perceptions obtained up to a given instant in
time [25]. Similarly, an adaptive reactive agent also perceives its environment
through sensors and acts in the environment through actuators, according to a
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function f that determines its internal behavior; however, the rule set of f may
spontaneously adapt over time, in response to operating history and perceptions,
such as a conventional biological entity. Function f maps a set of perceptions
into an action [25], such that f : 2P 
→ AC , where P is the set of perceptions and
AC is the set of actions. The rule set adaptation occurs through the adaptive
mechanism, triggered by the execution of adaptive rules [28].

An ordinary reactive agent acts upon the current perception, ignoring history.
Such approach has the clear advantage of providing an intelligible, modular
and efficient representation through 〈condition 
→ action〉 rules [25]. However,
simplicity comes at the cost of having no explicit knowledge representation,
besides the absence of symbolic internal environmental representation and action
memory [28].

Definition 9 (reactive agent). A reactive agent is defined as RA = (Q,P,AC ,

Γ, δ), such that Q is the set of internal states, P is the set of perceptions, AC is
the set of actions, Γ is the mapping, Γ : Q × 2P 
→ Q, and δ is a function that
maps rules into actions, δ : P 
→ AC .

Reactive agents have a limiting characteristic: decision-making acts only on
the current perception, implying the environment must be fully observable, oth-
erwise the agent will potentially fail [25]. The inclusion of an adaptive layer in a
reactive agent allows handling predicted yet unexpected situations in the current
context. Adaptive actions evolve the agent through time and accommodate new
contexts from environment observations [6,7].

Definition 10 (adaptive reactive agent). An adaptive reactive agent is de-
fined as AA = (A0,AM ), such that A0 is a reactive agent and AM is an adaptive
mechanism. For all operation steps k ≥ 0 (k is the value of a built-in counter
T started at zero and incremented by one unit every time a non-null adaptive
action is executed), AA follows the behavior determined by the underlying reac-
tive agent Ak until a non-null adaptive action is executed, which starts the k+1
operation step through adapting the rule set of the agent function.

The architecture of an adaptive reactive agent presented in Figure 1 is heavily
inspired by Russell and Norvig’s model [25]. For convenience, we included an
additional component containing learning modules in order to reduce complexity
and verbosity. However, it is important to observe that the model in itself is
powerful enough to handle any sort of computational task; the introduction of
a new component is merely for convenience and expressiveness purposes [24].

According to Figure 1, the adaptive mechanism is represented as an adaptive
action handler. Such handler intercepts requests from the underlying agent func-
tion and adapts the rule set according to patterns established in its action set
and optionally in the learning modules. The underlying reactive agent evolves
over time based on adaptations on its rule set, triggered by decision-making ac-
tions in the associated handler. Note that the adaptive layer enclosing the agent
retains the original reactive property; however, the agent itself acts by context
during its life cycle, one evolutionary reactive step at a time.
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Fig. 1. Architecture of an adaptive reactive agent, heavily inspired by Russell and
Norvig’s model [25].

The first module employs associative learning, such that the agent is able
to learn, memorize and reconstruct a pattern by associating the various parts
of this pattern with one another [19,29]. This process involves the creation of
a cognitive map. From a biological view, a cognitive map is the way certain
beings memorize the information they gain about the spatial organization of
their environment and how they make use of such information to navigate from
one point to another [19]. Cognitive maps are usually represented as graphs with
nodes that are computational elements. From this perspective, a cognitive map
may be enhanced with higher level adaptation as well [26].

The second module employs reinforcement learning, such that the agent is
able to recognize and favor certain behaviors that yield rewards rather than those
that yield punishments [19,4]. Ethologists classify this characteristic as motiva-
tional system. The reinforcement process involves the production of goal seeking
sequences through 〈object 
→ goal 〉 associations [4,10]. Booker [4] mentions the
response (of his models) to regularities hidden behind the equivocal nature of
sensory cues and use of information afforded by the environment with respect
to goals.

New contexts provide incremental resolution by dividing a task into smaller
subtasks [17,2]. Solving a task in a simpler abstraction space may be used to solve
similar tasks at higher abstraction levels [15]. The process is then repeated until
the original task is solved in its original abstraction space [23]. Such resolution
strategy may produce significant search space reductions [21,22,16].
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4 Experiments and discussions

In order to evaluate the concept of a reactive adaptive agent, we wrote a case
study using the traditional wumpus world problem, a variant of a computer
game [30] presented by Genesereth [25] as a testing environment for artificial
intelligence techniques. The wumpus world consists of a two-dimensional grid
containing a number of holes, a monster and an agent. The agent begins its
iteration in grid position (1, 1) and its task is set to avoid the monster and the
holes, find the gold and leave the environment by reaching the same position it
initiated. The agent can perceive a breeze in positions adjacent to the holes, a
stench in positions adjacent to the monster, and a glow in positions adjacent to
the gold. Variations of the wumpus world are available, in which the agent is
armed with one or more arrows, being able to shoot the monster when found [14].
Figure 2 illustrates the possible contexts handled by the reactive adaptive agent,
according to the execution of the corresponding adaptive actions.

Move around

Survive

Retrieve gold

Shoot arrow

Context 1

Move around

Survive

Shoot arrow

Leave environment

Context 2

Move around

Survive

Retrieve gold

Context 3

Move around

Survive

Leave environment

Context 4

gold
retrieved,

A()

gold
retrieved,

A()

monster
is dead, B()

monster
is dead, B()

adaptive action A()
−(r ∈ R | φ(r) = retrieve gold)
+(r /∈ R | φ(r) = leave env. . . )

end

adaptive action B()
−(r ∈ R | φ(r) = shoot arrow)

end

Fig. 2. Contexts handled by the reactive adaptive agent for the wumpus world problem.
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The agent interaction in the wumpus world was simulated using an agent
specification and simulation software developed by Jill Zimmerman3. We gener-
ated 14 random environments of size 4×4 with obstacles, gold and one monster.
The simulation software measured the agent interaction with the environment
and calculated a final score based on its overall performance [25]. We simulated
the interaction of four types of agents – reactive, model-based, goal-based and
adaptive reactive – in the generated environments and evaluated their global per-
formances. We also introduced a second adaptive reactive agent enhanced with
learning modules. The simulation was repeated 10 times for each ordered pair
〈agent, environment〉, totaling 700 executions. Results are shown in Figure 3.
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Fig. 3. Average score of 5 agents in 14 wumpus world environments.

According to Figure 3, agents had a similar overall execution for the same
environments. In particular, the ones based on model and goals had significantly
close performances. The reactive adaptive agent demonstrated a relatively better
performance when compared to the ordinary reactive agent and, in some envi-
ronments, had scores close to those based on model and goals. Most notably,
when enhanced with learning modules, the adaptive reactive agent had a sig-

3 Available at http://phoenix.goucher.edu/~jillz/cs340/.
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nificant performance boost, even surpassing the classical approaches on certain
environments.

5 Final remarks

In this paper, we presented a mutable approach to the classic reactive agent
through a bio-inspired model, while preserving its original properties. The key
element towards intelligence is adaptation. New contexts bring practical benefits
such as division of work, abstraction, reuse and maintenance. From a biological
point of view, conservation of energy is achieved through a compact cognitive
representation, since the current context holds no superfluous knowledge.

Through mutability, the organization of rules by context grants simplification
of the original task, dividing it into smaller subtasks. Additionally, execution
becomes more efficient in the long run since a context will only be activated if
it is actually needed. Existing techniques may be combined [6,28] in order to
specifically address each subtask.

Adaptivity is an interesting approach towards a natural, bio-inspired design
of agents, such that the underlying behavior is flexibly adjusted to contingencies
that arises in its interaction with an unknown environment. Mutability is a cru-
cial feature for survival, and the understanding of adaptive behavior in biological
beings may yield interesting results in the computational domain.
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