
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 109C (2017) 1176–1181

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.05.393

10.1016/j.procs.2017.05.393

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

International Workshop on Adaptive Technology
(WAT 2017)

DInAton: A Didactic and Interative Language for
Learning Adaptive Automata by Construction

Italo S. Vegaa, João José Netob, Francisco S. Marcondesc

aDepartamento de Ciência da Computação, Pontifícia Universidade Católica de São Paulo
R. Marquês de Paranaguá, 111, São Paulo, SP, Brasil

bEscola Politécnica, Departamento de Engenharia de Computação e Sistemas Digitais, Universidade de São Paulo
Av. Prof. Luciano Gualberto, s/n, Travessa 3, 158, São Paulo, SP, Brasil

cBrazilian Institute of Education, Science and Technology (IFSP), R. Pedro Vicente, 625, São Paulo, Brazil

Abstract

In order to reach the community interested in some basic elements of the adaptive automata theory, an interpretable language called
DInAton (Didactical and Interactive Adaptive Automata Construction Language) was projected. In the language design, the criteria
of similarity, orthogonality and parsimony were considered with the intention of preserving the adherence to the adaptive theory
and of conceiving an interactive environment for learning its main foundations. As a research result, we obtained a grammar for the
DInAton language that served as the basis for the development of a functional prototype with support for incremental construction
of finite and adaptive automata.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: adaptive automata, grammar design, interpreter, interactive learning environment, DInAton

1. Introduction

The adaptive automata theory was introduced by José Neto1 as contribution to the methodology used in the devel-
opment of programming language compilers. One of the main points of such theory refers to the automaton adaptivity
model, expressed as three basic constructed: actions, functions and transitions eligible as adaptive. The language
recognition occurs through topological transformations of an underlying device, triggered by an operation of an adap-
tive mechanism.

Inspired by this theory, Cereda and José Neto1 developed a library to support programming experiments based
on adaptivity. The primary outcome of such effort was a library named AA4J. This library was designed towards
adherence to the original formalism seen in José Neto’s theory. Hereof, the implementation support for adaptive

∗ Corresponding author, +55 11 3091-5402.
E-mail addresses: italo@pucsp.br (Italo S. Vega)., jjneto@usp.br (João José Neto)., yehaain@gmail.com (Francisco S. Marcondes).

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

International Workshop on Adaptive Technology
(WAT 2017)

DInAton: A Didactic and Interative Language for
Learning Adaptive Automata by Construction

Italo S. Vegaa, João José Netob, Francisco S. Marcondesc

aDepartamento de Ciência da Computação, Pontifícia Universidade Católica de São Paulo
R. Marquês de Paranaguá, 111, São Paulo, SP, Brasil

bEscola Politécnica, Departamento de Engenharia de Computação e Sistemas Digitais, Universidade de São Paulo
Av. Prof. Luciano Gualberto, s/n, Travessa 3, 158, São Paulo, SP, Brasil

cBrazilian Institute of Education, Science and Technology (IFSP), R. Pedro Vicente, 625, São Paulo, Brazil

Abstract

In order to reach the community interested in some basic elements of the adaptive automata theory, an interpretable language called
DInAton (Didactical and Interactive Adaptive Automata Construction Language) was projected. In the language design, the criteria
of similarity, orthogonality and parsimony were considered with the intention of preserving the adherence to the adaptive theory
and of conceiving an interactive environment for learning its main foundations. As a research result, we obtained a grammar for the
DInAton language that served as the basis for the development of a functional prototype with support for incremental construction
of finite and adaptive automata.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: adaptive automata, grammar design, interpreter, interactive learning environment, DInAton

1. Introduction

The adaptive automata theory was introduced by José Neto1 as contribution to the methodology used in the devel-
opment of programming language compilers. One of the main points of such theory refers to the automaton adaptivity
model, expressed as three basic constructed: actions, functions and transitions eligible as adaptive. The language
recognition occurs through topological transformations of an underlying device, triggered by an operation of an adap-
tive mechanism.

Inspired by this theory, Cereda and José Neto1 developed a library to support programming experiments based
on adaptivity. The primary outcome of such effort was a library named AA4J. This library was designed towards
adherence to the original formalism seen in José Neto’s theory. Hereof, the implementation support for adaptive

∗ Corresponding author, +55 11 3091-5402.
E-mail addresses: italo@pucsp.br (Italo S. Vega)., jjneto@usp.br (João José Neto)., yehaain@gmail.com (Francisco S. Marcondes).

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

mechanisms can be organized in three levels, according to automata categories. The first one refers to the finite
automata support, representing sets of states, symbols and transitions (henceforth named finite transitions). Regarding
the set of states, there is a distinction in terms of nature and role of each of them. States, in themselves, have a nature
of their own, though they can be in the role of initial or accepting states. The second category supports structured
pushdown automata, according to José Neto1,2. Submachine call transitions are added to the existing expressive
features of a finite automaton. Additionally, each call transition (call) has a linked callback instruction (return). The
effect of a call transition involes the use of a pushdown structure to handle calls and returns. The third category
supports the representation of adaptive automata, in which such devices add features for expressing adaptive actions,
functions and transitions.

However, in an earlier work by José Neto, an additional concern is identified: the elaboration of a didactic ma-
terial regarding language processors2. Vega points out that the use of a didactic material must be in harmony with
the learning environment and suggests a focus centered on narrative structures known as Goal-Obstacle-Catastrophe-
Reaction-Dilemma-Decision (OCC-RDD)3. Such narratives are designed for an environment called Hybrid and Inter-
active Presential Learning Environment (HIPLE). The combination of these ideas with a style of interaction based on
interpretation emerges as the basis for building a learning environment contemplating the adaptive automata theory.

The core of a mechanical process of interpretation is the language that defines sentential forms of interaction.
Considerations about the design of artificial languages intersect Chomsky’s initial paths4, with further developments
by Watt and Findlay5, as well as Friedman, Wand and Haynes6 And Kaplan7, for example. However, Bentley’s ideas8

had a marked influence on the results achieved and reported in this paper. The research question addressed here may be
summarized as “how to design the DInAton language — Didactical and Interactive Adaptive Automata Construction
Language?” It is a language specially designed for incremental construction of adaptive automata, suitable for HIPLE
environments.

2. DInAton Language Design

Several aspects were considered when designing the DInAton language, emphasizing its interpretive character-
istics, proximity to typical programming languages, mechanisms for textual and graphical representation of under
construction automata, as well as its adherence to the semantic model proposed by José Neto in1. In a more gen-
eral context, the criteria proposed by Bentley8 guided the DInAton language design in a greater or smaller scale:
orthogonality, generality, parsimony, completeness, similarity, extensibility and openness. These criteria refer to both
language instructions and aspects of their implementations.

2.1. DInAton Language Features

Adherence to the theoretical formalism — In line with Bentley, similarity refers to the relationship between the
constructs of the language and the elements of the domain to be manipulated. In this project, the elements of the
domain are those established by the AA4J library. As a means to enable the use of adaptive technology in program-
ming, Cereda and José Neto9 developed a library for implementing adaptive automata, using the Java programming
language. The initiative is based on the original theory introduced by José Neto1 and aims at being fully adherent
with the proposed formalism. From a practical viewpoint, the adaptive automaton implementation may be used to
represent types 2 and 3 recognizers as well, as the formalism is proven to be Turing equivalent10.

As to accomplish semantic equivalence to the adaptive theory, this library will be used to construct language
recognizers and query strings. Additionally, the DInAton environment will ensure the construction of valid automata,
such that the corresponding implementation will reflect consistently in the library domain. The environment also
brings refinements to the library, as new features arise in order to enhance the user experience while interacting with
the environment.

Underlying automaton specification — Another criterion of Bentley considered in the design of the DInAton lan-
guage was orthogonality: each instruction has a purpose different from the other. The semantic object refers to the
one implemented by Cereda and José Neto9. From a syntactic viewpoint, the sentential adherence to the theoretical
proposal must be attenuated when considering the constraints imposed by the execution model. In the structure of a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.393&domain=pdf


	 Ítalo S. Vega et al. / Procedia Computer Science 109C (2017) 1176–1181� 1177Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

International Workshop on Adaptive Technology
(WAT 2017)

DInAton: A Didactic and Interative Language for
Learning Adaptive Automata by Construction

Italo S. Vegaa, João José Netob, Francisco S. Marcondesc

aDepartamento de Ciência da Computação, Pontifícia Universidade Católica de São Paulo
R. Marquês de Paranaguá, 111, São Paulo, SP, Brasil

bEscola Politécnica, Departamento de Engenharia de Computação e Sistemas Digitais, Universidade de São Paulo
Av. Prof. Luciano Gualberto, s/n, Travessa 3, 158, São Paulo, SP, Brasil

cBrazilian Institute of Education, Science and Technology (IFSP), R. Pedro Vicente, 625, São Paulo, Brazil

Abstract

In order to reach the community interested in some basic elements of the adaptive automata theory, an interpretable language called
DInAton (Didactical and Interactive Adaptive Automata Construction Language) was projected. In the language design, the criteria
of similarity, orthogonality and parsimony were considered with the intention of preserving the adherence to the adaptive theory
and of conceiving an interactive environment for learning its main foundations. As a research result, we obtained a grammar for the
DInAton language that served as the basis for the development of a functional prototype with support for incremental construction
of finite and adaptive automata.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: adaptive automata, grammar design, interpreter, interactive learning environment, DInAton

1. Introduction

The adaptive automata theory was introduced by José Neto1 as contribution to the methodology used in the devel-
opment of programming language compilers. One of the main points of such theory refers to the automaton adaptivity
model, expressed as three basic constructed: actions, functions and transitions eligible as adaptive. The language
recognition occurs through topological transformations of an underlying device, triggered by an operation of an adap-
tive mechanism.

Inspired by this theory, Cereda and José Neto1 developed a library to support programming experiments based
on adaptivity. The primary outcome of such effort was a library named AA4J. This library was designed towards
adherence to the original formalism seen in José Neto’s theory. Hereof, the implementation support for adaptive

∗ Corresponding author, +55 11 3091-5402.
E-mail addresses: italo@pucsp.br (Italo S. Vega)., jjneto@usp.br (João José Neto)., yehaain@gmail.com (Francisco S. Marcondes).

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

International Workshop on Adaptive Technology
(WAT 2017)

DInAton: A Didactic and Interative Language for
Learning Adaptive Automata by Construction

Italo S. Vegaa, João José Netob, Francisco S. Marcondesc

aDepartamento de Ciência da Computação, Pontifícia Universidade Católica de São Paulo
R. Marquês de Paranaguá, 111, São Paulo, SP, Brasil

bEscola Politécnica, Departamento de Engenharia de Computação e Sistemas Digitais, Universidade de São Paulo
Av. Prof. Luciano Gualberto, s/n, Travessa 3, 158, São Paulo, SP, Brasil

cBrazilian Institute of Education, Science and Technology (IFSP), R. Pedro Vicente, 625, São Paulo, Brazil

Abstract

In order to reach the community interested in some basic elements of the adaptive automata theory, an interpretable language called
DInAton (Didactical and Interactive Adaptive Automata Construction Language) was projected. In the language design, the criteria
of similarity, orthogonality and parsimony were considered with the intention of preserving the adherence to the adaptive theory
and of conceiving an interactive environment for learning its main foundations. As a research result, we obtained a grammar for the
DInAton language that served as the basis for the development of a functional prototype with support for incremental construction
of finite and adaptive automata.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: adaptive automata, grammar design, interpreter, interactive learning environment, DInAton

1. Introduction

The adaptive automata theory was introduced by José Neto1 as contribution to the methodology used in the devel-
opment of programming language compilers. One of the main points of such theory refers to the automaton adaptivity
model, expressed as three basic constructed: actions, functions and transitions eligible as adaptive. The language
recognition occurs through topological transformations of an underlying device, triggered by an operation of an adap-
tive mechanism.

Inspired by this theory, Cereda and José Neto1 developed a library to support programming experiments based
on adaptivity. The primary outcome of such effort was a library named AA4J. This library was designed towards
adherence to the original formalism seen in José Neto’s theory. Hereof, the implementation support for adaptive

∗ Corresponding author, +55 11 3091-5402.
E-mail addresses: italo@pucsp.br (Italo S. Vega)., jjneto@usp.br (João José Neto)., yehaain@gmail.com (Francisco S. Marcondes).

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

mechanisms can be organized in three levels, according to automata categories. The first one refers to the finite
automata support, representing sets of states, symbols and transitions (henceforth named finite transitions). Regarding
the set of states, there is a distinction in terms of nature and role of each of them. States, in themselves, have a nature
of their own, though they can be in the role of initial or accepting states. The second category supports structured
pushdown automata, according to José Neto1,2. Submachine call transitions are added to the existing expressive
features of a finite automaton. Additionally, each call transition (call) has a linked callback instruction (return). The
effect of a call transition involes the use of a pushdown structure to handle calls and returns. The third category
supports the representation of adaptive automata, in which such devices add features for expressing adaptive actions,
functions and transitions.

However, in an earlier work by José Neto, an additional concern is identified: the elaboration of a didactic ma-
terial regarding language processors2. Vega points out that the use of a didactic material must be in harmony with
the learning environment and suggests a focus centered on narrative structures known as Goal-Obstacle-Catastrophe-
Reaction-Dilemma-Decision (OCC-RDD)3. Such narratives are designed for an environment called Hybrid and Inter-
active Presential Learning Environment (HIPLE). The combination of these ideas with a style of interaction based on
interpretation emerges as the basis for building a learning environment contemplating the adaptive automata theory.

The core of a mechanical process of interpretation is the language that defines sentential forms of interaction.
Considerations about the design of artificial languages intersect Chomsky’s initial paths4, with further developments
by Watt and Findlay5, as well as Friedman, Wand and Haynes6 And Kaplan7, for example. However, Bentley’s ideas8

had a marked influence on the results achieved and reported in this paper. The research question addressed here may be
summarized as “how to design the DInAton language — Didactical and Interactive Adaptive Automata Construction
Language?” It is a language specially designed for incremental construction of adaptive automata, suitable for HIPLE
environments.

2. DInAton Language Design

Several aspects were considered when designing the DInAton language, emphasizing its interpretive character-
istics, proximity to typical programming languages, mechanisms for textual and graphical representation of under
construction automata, as well as its adherence to the semantic model proposed by José Neto in1. In a more gen-
eral context, the criteria proposed by Bentley8 guided the DInAton language design in a greater or smaller scale:
orthogonality, generality, parsimony, completeness, similarity, extensibility and openness. These criteria refer to both
language instructions and aspects of their implementations.

2.1. DInAton Language Features

Adherence to the theoretical formalism — In line with Bentley, similarity refers to the relationship between the
constructs of the language and the elements of the domain to be manipulated. In this project, the elements of the
domain are those established by the AA4J library. As a means to enable the use of adaptive technology in program-
ming, Cereda and José Neto9 developed a library for implementing adaptive automata, using the Java programming
language. The initiative is based on the original theory introduced by José Neto1 and aims at being fully adherent
with the proposed formalism. From a practical viewpoint, the adaptive automaton implementation may be used to
represent types 2 and 3 recognizers as well, as the formalism is proven to be Turing equivalent10.

As to accomplish semantic equivalence to the adaptive theory, this library will be used to construct language
recognizers and query strings. Additionally, the DInAton environment will ensure the construction of valid automata,
such that the corresponding implementation will reflect consistently in the library domain. The environment also
brings refinements to the library, as new features arise in order to enhance the user experience while interacting with
the environment.

Underlying automaton specification — Another criterion of Bentley considered in the design of the DInAton lan-
guage was orthogonality: each instruction has a purpose different from the other. The semantic object refers to the
one implemented by Cereda and José Neto9. From a syntactic viewpoint, the sentential adherence to the theoretical
proposal must be attenuated when considering the constraints imposed by the execution model. In the structure of a



1178	 Ítalo S. Vega et al. / Procedia Computer Science 109C (2017) 1176–1181
I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000 3

q2q1q0
a

a b

Fig. 1. Automaton graphical representation generated by the DInAton interpreter

deterministic finite automaton, four elements are specified: AFD = (Q,Σ, δ, q0, F). The DInAton grammatical rule
provides the following forms using the Parr notation11 (simplified grammar):

Finite automaton construction support — In addition to the similarity criterion, the instructions were also designed
with parsimony, trying to minimize the amount of syntactic elements needed to conduct a single interaction with the
interpretation environment. Thus, in the interpretive mode with finite automata construction support, the following
sequence of interactions creates a new automaton identified by and defines its initial and acceptance states (the
symbol marks the interpreter prompt):

For instance, let there be an automaton f f 1 = ({q0, q1, q2}, {a, b}, {(q0, a) �→ q1, (q1, b) �→ q2, (q2, a) �→ q1}, q0, {q2}).
The corresponding specification in the DInAton environment of interpretation is presented as follows:

At any time, the recognition of a given sequence of symbols can be requested. For example, what would be the
reaction of the automaton so far designed, when asked to recognize the string w = ab?

Multiple representation support — The view language command produces an automaton representation, both in
textual and graphical forms, being the latter a diagram — the result corresponds to that shown in Figure 1:

4 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

«DInAton»
Adapt ive

Automaton

DInAton
Grammar

DInAton
Interpre ter

DInAton
Parser

Adaptive
Automaton

Basic Parser

antlr4

semantic

{abs t rac t }
Adapt ive

Automaton

«new»

Fig. 2. Interpreter logical architecture

2.2. Grammar Specification and Semantic Object

Although inspired by seminal results of Chomsky4, José Neto1 and Ramos12, the grammar project was boosted
by Parr’s work11. Parr’s ANTLR4 tool provides not only a grammar specification metalanguage, but also integrates
comfortably with the object-oriented programming principles. Broadly speaking, each grammar production rule es-
tablishes a particular sentential structure and originates a connection point with the semantic model of the DInA-
ton interpreter. In Section 2.1 there is an excerpt of the DInAton grammar specification, indicated by the

construct. Then, using a BNF notational style, the production rules are introduced, such that, to the left of
the separator, a non-terminal is recognized. To the right, the derivation possibilities are listed until the symbol is
reached. Let us take the rule that establishes the interpreter instructions format as an example. Several actions are sup-
ported, such as automata creation, main automaton replacement inside the interpretation environment, features for the
insertion and removal of topology elements of the automaton under construction, external representation generation,
test of acceptance of strings of a language and load of an external automaton specification.

Regarding the linkage points in the semantic model, the ANTLR4 tool offers two possibilities, namely visitor and
listener based approaches. Parr discusses both in detail, presenting their advantages and disadvantages. For DInAton,
we chose the listener approach, originating an architecture in which the structural elements shown in the UML class
diagram presented in Figure 2 are highlighted. The main interpretation process is in an active object of class

. This object is responsible for constructing and interacting with a object at each
instruction execution request from the interpreter user. An operational style was used in order to specify the semantic
rules of the DInAton language, influenced by Rowlet’s work13. As part of its reaction behaviour to a string recognition,
the object collaborates with the object that effectively encapsulates access
to the AA4J library.

3. Result

The results so far produced by the DInAton language-based learning environment project are promising. The
adherence of features offered by the AA4J library to the adaptive automata theory simplifies the design of the DInAton
language. It starts from the premise that there is a semantic model of the theory appropriately implemented, allowing
to focus the attention of the project on the interaction model with the learner.

Another point to highlight is the idea of an incremental construction of adaptive automata. It favours the design of
learning environments that gradually explore the learner’s cognitive processes. A typical situation is that in which a
finite automaton is constructed, its properties are investigated (mainly the ones from level 3 recognition languages),
and then it is used as the underlying device of a new adaptive automaton. Depending on the adaptive transitions that
define such device, level 1 languages become recognizable by coupling the adaptive mechanism with the underlying
finite automaton.



	 Ítalo S. Vega et al. / Procedia Computer Science 109C (2017) 1176–1181� 1179
I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000 3

q2q1q0
a

a b

Fig. 1. Automaton graphical representation generated by the DInAton interpreter

deterministic finite automaton, four elements are specified: AFD = (Q,Σ, δ, q0, F). The DInAton grammatical rule
provides the following forms using the Parr notation11 (simplified grammar):

Finite automaton construction support — In addition to the similarity criterion, the instructions were also designed
with parsimony, trying to minimize the amount of syntactic elements needed to conduct a single interaction with the
interpretation environment. Thus, in the interpretive mode with finite automata construction support, the following
sequence of interactions creates a new automaton identified by and defines its initial and acceptance states (the
symbol marks the interpreter prompt):

For instance, let there be an automaton f f 1 = ({q0, q1, q2}, {a, b}, {(q0, a) �→ q1, (q1, b) �→ q2, (q2, a) �→ q1}, q0, {q2}).
The corresponding specification in the DInAton environment of interpretation is presented as follows:

At any time, the recognition of a given sequence of symbols can be requested. For example, what would be the
reaction of the automaton so far designed, when asked to recognize the string w = ab?

Multiple representation support — The view language command produces an automaton representation, both in
textual and graphical forms, being the latter a diagram — the result corresponds to that shown in Figure 1:

4 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

«DInAton»
Adapt ive

Automaton

DInAton
Grammar

DInAton
Interpre ter

DInAton
Parser

Adaptive
Automaton

Basic Parser

antlr4

semantic

{abs t rac t }
Adapt ive

Automaton

«new»

Fig. 2. Interpreter logical architecture

2.2. Grammar Specification and Semantic Object

Although inspired by seminal results of Chomsky4, José Neto1 and Ramos12, the grammar project was boosted
by Parr’s work11. Parr’s ANTLR4 tool provides not only a grammar specification metalanguage, but also integrates
comfortably with the object-oriented programming principles. Broadly speaking, each grammar production rule es-
tablishes a particular sentential structure and originates a connection point with the semantic model of the DInA-
ton interpreter. In Section 2.1 there is an excerpt of the DInAton grammar specification, indicated by the

construct. Then, using a BNF notational style, the production rules are introduced, such that, to the left of
the separator, a non-terminal is recognized. To the right, the derivation possibilities are listed until the symbol is
reached. Let us take the rule that establishes the interpreter instructions format as an example. Several actions are sup-
ported, such as automata creation, main automaton replacement inside the interpretation environment, features for the
insertion and removal of topology elements of the automaton under construction, external representation generation,
test of acceptance of strings of a language and load of an external automaton specification.

Regarding the linkage points in the semantic model, the ANTLR4 tool offers two possibilities, namely visitor and
listener based approaches. Parr discusses both in detail, presenting their advantages and disadvantages. For DInAton,
we chose the listener approach, originating an architecture in which the structural elements shown in the UML class
diagram presented in Figure 2 are highlighted. The main interpretation process is in an active object of class

. This object is responsible for constructing and interacting with a object at each
instruction execution request from the interpreter user. An operational style was used in order to specify the semantic
rules of the DInAton language, influenced by Rowlet’s work13. As part of its reaction behaviour to a string recognition,
the object collaborates with the object that effectively encapsulates access
to the AA4J library.

3. Result

The results so far produced by the DInAton language-based learning environment project are promising. The
adherence of features offered by the AA4J library to the adaptive automata theory simplifies the design of the DInAton
language. It starts from the premise that there is a semantic model of the theory appropriately implemented, allowing
to focus the attention of the project on the interaction model with the learner.

Another point to highlight is the idea of an incremental construction of adaptive automata. It favours the design of
learning environments that gradually explore the learner’s cognitive processes. A typical situation is that in which a
finite automaton is constructed, its properties are investigated (mainly the ones from level 3 recognition languages),
and then it is used as the underlying device of a new adaptive automaton. Depending on the adaptive transitions that
define such device, level 1 languages become recognizable by coupling the adaptive mechanism with the underlying
finite automaton.



1180	 Ítalo S. Vega et al. / Procedia Computer Science 109C (2017) 1176–1181
I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000 5

In addition to the study of automata properties, but still as an item of interest in an interactive learning environment,
the textual and graphical representation features of the DInAton language should be punctuated. The view instruction
with its different options becomes an important tool to observe the automaton built by the learner. It is possible
to inspect a textual representation of the states of the automaton with (assuming is the
automaton identifier). A graphical representation of the transitions can be calculated by executing the

statement.

4. Discussion

Based on the features offered by the DInAton language, interactive learning environments can be designed such that
automata-building experiments are performed. What happens when one removes one of the states of the automaton?
What if it’s in the initial state role? What if the state participates in state transitions? Questions such as these can
be formulated in experiments that help learners develop their intuition about adaptive theory. Following in the same
direction of automata construction, other experiments may redirect attention to the study of language recognizers.
Variations in the automaton topology resulting from the execution of instructions within the interpretive environment
enable string recognition tests (strings that may belong or not to the target language of the experiment), which favour
the cognitive processes of comprehension.

The DInAton language evolution also establishes new directions for a refactoring of the AA4J library interfaces.
The incremental construction nature of DInAton automata should also be contemplated by a review of the AA4J library,
as its original design did not address requirements for use in an interpretive environment. Additionally, new features
are needed in order to offer textual and graphical representations whenever needed by the language interpreter, as well
as a straightforward mechanism for persisting the semantic object for later use. It is important to note that there is an
ongoing effort on providing adaptive automata specifications using the XML markup language14, such that a format
mapper can correctly generate the corresponding semantic object in the AA4J domain.

As the theory of computation is found in the curricular bases of the higher education courses, it is hoped to open a
way for the adaptive theory to reach this level of foundation. One of the main barriers to be addressed is the design of
learning environments that favour the presentation of adaptive theory in a more didactic way. The expectation of an
incremental automata construction tends to be an interesting option in this direction.

The DInAton language is still in the definition process. Currently, it supports the construction of finite automata
and adaptive automata with certain topological constraints (many of them due to their use in a learning environment).
It is intended to refine DInAton with support to the construction of structured pushdown automata and composition
of submachines. The interpreter for the DInAton language is an experimental system still in heavy development.
Contributions will be very well received.

References

1. J. J. Neto, Contribuições à metodologia de construção de compiladores, Tese de livre docência, Escola Politécnica da Universidade de São
Paulo, São Paulo (1993).

2. J. J. Neto, M. E. S. Magalhães, Reconhecedores sintáticos - uma alternativa didática para uso em cursos de engenharia, in: XIV Congresso
Nacional de Informática, Sâo Paulo, 1981, pp. 171–181.

3. I. S. Vega, Fábulas OCC-RDD: histórias didáticas para ambientes interativos híbridos e presenciais de aprendizagem, Tecnologia Educacional
12 (212) (2016) 105–118, ISSN 0102-5503.
URL

4. N. Chomsky, Three models for the description of language, IRE Trans. Inf. Theory (1956) 113—-124doi:10.1109/TIT.1956.1056813.
5. D. A. Watt, W. Findlay, Programming language design concepts, Wiley, 2004, pages = I-XVIII, 1-473.
6. D. P. Friedman, M. Wand, C. T. Haynes, Essentials of Programming Languages, 3rd Edition, The MIT Press, 2008.
7. R. M. Kaplan, Constructing Language ProProcess for Little Languages, John Wiley and Sons Inc., 1994, ISBN: 0-471-59754-6.
8. J. Bentley, Little language, Communications of the ACM 29 (8) (1986) 711–721.
9. P. R. M. Cereda, J. J. Neto, AA4J: uma biblioteca para implementação de autômatos adaptativos, in: Memórias do X Workshop de Tecnologia

Adaptativa — WTA 2016, Escola Politécnica da Universidade de São Paulo, 2016, pp. 16–26, ISBN: 978-85-86686-86-3.
10. R. L. de Azevedo da Rocha, J. J. Neto, Autômato adaptativo, limites e complexidade em comparação com máquina de turing, in: Proceedings

of the second Congress of Logic Applied to Technology — LAPTEC 2000, Faculdade SENAC de Ciências Exatas e Tecnologia, São Paulo,
2001.

11. T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages, Pragmatic Bookshelf, 2007.

6 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

12. M. V. M. Ramos, J. J. Neto, I. S. Vega, Linguagens Formais: Teoria, Modelagem e Implementação, 1st Edition, Bookman, Porto Alegre,
2009.

13. T. Rowlett, The Object-Oriented Development Process: Developing and Managing a Robust Process for Object-Oriented Development,
Prentice Hall, 2000, ISBN-13: 978-0130306210.

14. P. R. M. Cereda, J. J. Neto, XML2AA: geração automática de autômatos adaptativos a partir de especificações XML, to appear in: Memórias
do XI Workshop de Tecnologia Adaptativa — WTA 2017 (January 2017).



	 Ítalo S. Vega et al. / Procedia Computer Science 109C (2017) 1176–1181� 1181
I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000 5

In addition to the study of automata properties, but still as an item of interest in an interactive learning environment,
the textual and graphical representation features of the DInAton language should be punctuated. The view instruction
with its different options becomes an important tool to observe the automaton built by the learner. It is possible
to inspect a textual representation of the states of the automaton with (assuming is the
automaton identifier). A graphical representation of the transitions can be calculated by executing the

statement.

4. Discussion

Based on the features offered by the DInAton language, interactive learning environments can be designed such that
automata-building experiments are performed. What happens when one removes one of the states of the automaton?
What if it’s in the initial state role? What if the state participates in state transitions? Questions such as these can
be formulated in experiments that help learners develop their intuition about adaptive theory. Following in the same
direction of automata construction, other experiments may redirect attention to the study of language recognizers.
Variations in the automaton topology resulting from the execution of instructions within the interpretive environment
enable string recognition tests (strings that may belong or not to the target language of the experiment), which favour
the cognitive processes of comprehension.

The DInAton language evolution also establishes new directions for a refactoring of the AA4J library interfaces.
The incremental construction nature of DInAton automata should also be contemplated by a review of the AA4J library,
as its original design did not address requirements for use in an interpretive environment. Additionally, new features
are needed in order to offer textual and graphical representations whenever needed by the language interpreter, as well
as a straightforward mechanism for persisting the semantic object for later use. It is important to note that there is an
ongoing effort on providing adaptive automata specifications using the XML markup language14, such that a format
mapper can correctly generate the corresponding semantic object in the AA4J domain.

As the theory of computation is found in the curricular bases of the higher education courses, it is hoped to open a
way for the adaptive theory to reach this level of foundation. One of the main barriers to be addressed is the design of
learning environments that favour the presentation of adaptive theory in a more didactic way. The expectation of an
incremental automata construction tends to be an interesting option in this direction.

The DInAton language is still in the definition process. Currently, it supports the construction of finite automata
and adaptive automata with certain topological constraints (many of them due to their use in a learning environment).
It is intended to refine DInAton with support to the construction of structured pushdown automata and composition
of submachines. The interpreter for the DInAton language is an experimental system still in heavy development.
Contributions will be very well received.

References

1. J. J. Neto, Contribuições à metodologia de construção de compiladores, Tese de livre docência, Escola Politécnica da Universidade de São
Paulo, São Paulo (1993).

2. J. J. Neto, M. E. S. Magalhães, Reconhecedores sintáticos - uma alternativa didática para uso em cursos de engenharia, in: XIV Congresso
Nacional de Informática, Sâo Paulo, 1981, pp. 171–181.

3. I. S. Vega, Fábulas OCC-RDD: histórias didáticas para ambientes interativos híbridos e presenciais de aprendizagem, Tecnologia Educacional
12 (212) (2016) 105–118, ISSN 0102-5503.
URL

4. N. Chomsky, Three models for the description of language, IRE Trans. Inf. Theory (1956) 113—-124doi:10.1109/TIT.1956.1056813.
5. D. A. Watt, W. Findlay, Programming language design concepts, Wiley, 2004, pages = I-XVIII, 1-473.
6. D. P. Friedman, M. Wand, C. T. Haynes, Essentials of Programming Languages, 3rd Edition, The MIT Press, 2008.
7. R. M. Kaplan, Constructing Language ProProcess for Little Languages, John Wiley and Sons Inc., 1994, ISBN: 0-471-59754-6.
8. J. Bentley, Little language, Communications of the ACM 29 (8) (1986) 711–721.
9. P. R. M. Cereda, J. J. Neto, AA4J: uma biblioteca para implementação de autômatos adaptativos, in: Memórias do X Workshop de Tecnologia

Adaptativa — WTA 2016, Escola Politécnica da Universidade de São Paulo, 2016, pp. 16–26, ISBN: 978-85-86686-86-3.
10. R. L. de Azevedo da Rocha, J. J. Neto, Autômato adaptativo, limites e complexidade em comparação com máquina de turing, in: Proceedings

of the second Congress of Logic Applied to Technology — LAPTEC 2000, Faculdade SENAC de Ciências Exatas e Tecnologia, São Paulo,
2001.

11. T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages, Pragmatic Bookshelf, 2007.

6 I. S. Vega, J. José Neto and Francisco S. Marcondes / Procedia Computer Science 00 (2016) 000–000

12. M. V. M. Ramos, J. J. Neto, I. S. Vega, Linguagens Formais: Teoria, Modelagem e Implementação, 1st Edition, Bookman, Porto Alegre,
2009.

13. T. Rowlett, The Object-Oriented Development Process: Developing and Managing a Robust Process for Object-Oriented Development,
Prentice Hall, 2000, ISBN-13: 978-0130306210.

14. P. R. M. Cereda, J. J. Neto, XML2AA: geração automática de autômatos adaptativos a partir de especificações XML, to appear in: Memórias
do XI Workshop de Tecnologia Adaptativa — WTA 2017 (January 2017).


