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Adaptivity: One Phenomenon, multiple perspectives
of study

Rosalia Caya and João José Neto

Abstract—This article studies adaptivity as a general phe-
nomenon, a subject of matter, permeable to different perspective
within the research areas. From simple and general defini-
tions grounded in Biology and Psychology to sophisticated and
particular definitions within Computer technology areas, such
as Computer Science, Information Technology, and Software
Engineering, this work focus in retrieving the core features
that characterize adaptivity, its needs, the different connected
areas and the characteristic problems it is suited to solve. We
present a proposal for the holistic characterization of adaptive
behavior that contributes in the establishment of a framework to
share scientific knowledge regarding specification, representation,
modeling, design and implementation of adaptive behavior in the
technological arena.

Index Terms—Adaptivity, self-* systems, complexity, cybernet-
ics, autonomic computing.

I. INTRODUCTION

THE idea of an entity capable of modifying its own
behavior according to characteristics of its environment

and its own particular goals it’s not a novelty, as a matter of
fact it has been around from ancient times. From Daedalus, the
most ingenious inventor of Greek myth, credited with making
the first “living statues” that appeared to be endowed with life
because of its capability to make human-like movements, wept
and even vocalized [1]. Automata, from Greek perspective
self-operating entities made to obey particular goals[2], were
also engineered by Hephaestus, the Greek god of invention
and technology. Talos, the gigantic animated bronze warrior
programmed to guard the island of Crete, was one of Hep-
haestus’s creations. Many variations of the myth exists and
the analysis of the story of Talos has risen several books and
studies. However, most of them agree on some characteristics
of Talos: autonomous entity, with an specific task given by a
superior authority that needs to be aware of the circumstances
in its surroundings to be able to fulfill its goal, through the
acquisition of hidden knowledge or underlying truth [3]. This
seem to presage today’s scientific ”cybernetic organism”[1].

Automatic machines were also created by Italian inventor
Leonardo da Vinci. Leonardo’s robot (or Leonardo’s me-
chanical knight) was a humanoid automaton designed and
possibly constructed by Leonardo da Vinci around the year
1495. The robot knight is capable of performing several
human-like motions: he could stand, sit, raise its visor and
independently maneuver its arms. t is partially a result of
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Leonardo’s anatomical research in the Canon of Proportions
as described in the Vitruvian Man focusing in the complexity
of the movements in human body.

A new attitude towards automata is to be found in Descartes
when he suggested that the bodies of animals are nothing
more than complex machines. France in the 17th century
was the birthplace of those ingenious mechanical toys that
were to become prototypes for the engines of the Industrial
Revolution following a reductionist approach. This way of
thinking culminated in unprecedented economic growth and
development, and machines entered in everyone’s lives. How-
ever, techniques continue to evolve along with technology and
computing power, so, new models can be developed that better
reflect the real world and its complexity [4]. Most real-world
problems deal with complexity, uncertainty and optimization
of some type where information must be exploited as acquired
so that performance maintains or improves apace. This char-
acteristics compound the basic definition for adaptive behavior
we will present in the next section, and permeates problems in
several areas of knowledge as diverse as ecology, psychology,
economy, artificial intelligence, computational mathematics,
sociology, and others. This way, over the years, some fields
within the technological arena have dedicated special efforts
to study adaptive behavior and developed approaches to deal
with it in its particular domain.

However, in the last decades the study of adaptivity is
gaining attention as a multi-disciplinary concern due to the
rising demand for intelligent and more realistic applications.
Applications mimicking human behavior, considering contin-
ually changing conditions, critical systems or high-definition
simulation of real life situations have introduced back into
technology the complexity cut off by the reductionist approach
at the beginning of computer’s era. This opens the door for
many potential applications that require real-time perception
and reaction. In fact the rising of new applications empow-
ered by technologies, such as Internet of Things, Ubiquitous
Computing, Multi-agent Systems, Evolving Systems, Cyber-
Physical Systems, autonomic computing and others demand
the support of some sort to process adaptive behavior while
aiming a particular goal.

As consequence a variety of spaces to develop research
related to adaptivity have been created. Some institutions
and research groups specifically address adaptive behavior,
complexity and dynamic change. Well established venues on
technology have incorporated issues on adaptivity within their
main tracks as academic work and research projects related
to the topic continue to rise, as detailed in [5]. In fact, to
deal with this growth dedicated venues from different natures:
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academic (workshops, conferences, and journals) and main-
stream (magazines, blogs and trade journals) have been created
to cover topics on adaptivity. The same can be observed
within the industry where inclusion of assisted technology and
human-centered approaches welcome variety, complexity and
uncertainty in every-day technology.

However, despite the growth and advances shown by re-
search, this scenario and promising tendency reveal one major
challenge: the need for a unified approach for adaptivity. The
aforementioned approaches taken by specific fields present ad-
hoc solutions to deal with adaptivity within their domains.
On one side, this situation allows that different areas respond
with autonomy to the challenges as they appear, creating new
knowledge process and understandings. On the other side,
the same situation is an ideal environment for creation of
domain specific terminology, methods, models and resources,
that sometimes remain invisible or even conflict between each
other. We believe that by facing that challenge researchers col-
laborate to highlight the multi-disciplinary nature of adaptive
behavior and empower the growth of a unified field.

To address this challenge, in this article we propose an
study on literature of four different fields to create an holistic
framework matching theoretical and practical approaches to
define, model and create technology considering adaptive
behavior.

Paper Organization The rest of the paper is organized
as follows: first, in Section II, we analyze the historical
scientific interest in the study of change processing within
technological fields. In Section III we look at the approaches
this phenomenon has taken within different technological areas
aiming to solve problems related to their particular subject
matter. We took four main fields within technological arena
related to adaptivity that have developed solid approaches for
dealing with adaptive behavior: self-* systems, cybernetics,
complex systems, and autonomic computing. In Section IV,
we propose an holistic vision of adaptivity, the factors that
allow such approach, the common ground between the theory
in the analyzed fields, and the contribution and advantages it
will bring. Later, in Section V, we took a revision of related
works on unified initiatives for adaptive behavior and highlight
the difference they present with this work. Finally, in Section
VI, we elaborate the conclusions about this work and present
the future directions to develop an holistic vision of adaptivity.

II. ADAPTIVITY: THE PHENOMENON

The evolution and grown of technology have developed
systems more complex and heterogeneous. At the same time,
the interaction with such systems, made that the demand from
users for mechanisms that allow personalization, reconfigu-
ration, flexibility and autonomy passed from preference to
necessity. When consulting literature about computer science
and technology one can find several studies that highlight a
novel ability from the systems to adjust themselves to events in
their surrounding. Systems with this ability can be called ”self-
adaptive systems” within software engineering, or ”dynami-
cally adaptive systems” for the dynamic change community,

or as part of ”autonomous” or ”evolving” systems. As matter
of fact, there have been several keywords, over the years and
across disciplines, that aim to describe some aspects of interest
of a wider phenomenon: adaptive behavior.

A. The intuitive definition

In the most basic approach, we define adaptivity in the
following intuitive terms:

Adaptivity is the ability of an entity, at any moment, to
decide the modification, by executing a set of proper actions,
of its own features, structure and/or behavior, or even its
environment, when facing new coming events perceived in
its surroundings while pursuing a particular goal to suit more
efficiently the new context of its functioning.

The term entity can take a wide range of meanings for
example: individual, system, structure, agent, being, and so
on, encompassing different magnitudes from a single molecule
to an interacting group of organisms. The concrete meaning
is largely determined by the field of study. The decision to
effectively change any of its components comes uniquely from
its own analysis about the benefits gained in doing so. The
direct execution of the proper set of actions matching the
situation can have indirect repercussions in other available
actions that define the behavior of the entity. The analysis
mechanism is performed due to stimulus perceived, or sensed,
in the current situation. The high-level goal the entity aims
generally is set by an external high-level authority: a leader,
a manager, a need or even evolution. The motivation in
performing adaptations is a better suiting of the entity and its
goal into the new situation, this have a variety consequences,
such as: incorporation/drop of new features to take advantage
of opportunities, avoidance of threats, or preparation for facing
danger. By being adaptive the entity tries to respond to changes
in the context in which it performs at the moment. The context
is define by its internal features (behavior and structure) the
characteristics of the external environment (resources, events,
objects within) and the channels of interaction between them.

III. ADAPTIVITY: THE MULTIPLE PERSPECTIVES

Adaptive behavior is an ability that has been studied within
technological and computational arena for a long time from
different perspectives. Most of this perspectives correspond
with a particular domain, and were developed taking into
account the focus of the field, the terminology and the con-
cepts proper of that field. However, as we will see, when
analyzing adaptivity they present profound similarities. We
will present four main fields in technology that study adaptive
behavior: Self-* systems, Cybernetics, Autonomic Computing
and Complex Systems. For each of them we will give a
concise definition of the field, it main focus, the general
characterization of its architecture and it relationship with
adaptivity.

A. Self-* Systems

A self-* system is a computer system that maintains at least
one aspect of its operation automatically to relieve some of the
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burden that complex systems put over human administrators.
The aspects it automatize are known as self-* properties, they
are a set of features that characterize the behavior of some
complex system [6]. The self- prefix highlight the autonomous
nature of this property, meaning that the system has the power
to decide, perform and control over this feature on its own.

These properties, even when particularly applied to describe
technological entities, were inspired and observed first in
natural organisms [7] whom use them efficiently to achieve
particular goals or overcome difficulties. Thereby, the self-*
properties are related to adaptive behavior by describing the
requirements and consequences of applying adaptivity within
the systems. Figure 1 shows a hierarchical categorization of
some of the most referenced self-* properties over the years.
From these self-* properties two of them differentiate in nature
from the others: self-management and self-adaptivity. Self-
management is a vision, it can be thought as the parent or
superclass of all self-properties. It describes a system that
has at least one self-* property [8], [9]. Self-adaptivity or
self-adaptiveness is the ability of an entity to evaluate its
own behavior and change it when the evaluation indicates
that its not accomplishing what the software is intended to
do [10]. So self-adaptivity it can be understood as ability to
process dynamic change in an autonomous and intelligent way,
adjusting some characteristics in its behavior according to the
environment in which the system performs. Therefore, we can
say self-adaptivity is subsumed by other, more narrow self-*
properties [8].

Fig. 1. Hierarchy of Self-* properties. Adapted from [11], [12], [9], [13]

Properties at the primitive level of this hierarchy, self-
awareness and context awareness, are necessary condition for
any system to process some type of change. Properties at the
major level embedded more complex functions, hence, they
are provided with more advanced mechanism of evaluation
and control.

The four properties highlighted are the more referenced of
the major level in the literature of different fields related to
adaptive behavior. They are explicitly named as fundamental
for the Autonomic Computing of IBM [14]. However, since
the 2001 launch of Autonomic Computing by IBM, the set of
self-* properties has grown substantially[15] and other self-*
properties have been defined in the last years for computer
systems[16]. In [6] and [9] the authors present a detailed,
however not closed or definitive, list of self-* properties

together with example of some types of systems implementing
them.

Properties at the general level are those of higher complexity
present in a system that processes changes and they are
usually performed and observed by more sophisticated entities
that control functionalities in different parts of the system.
It is important to point out that in literature the term self-
adaptivity has several terms closely related, particularly, self-
managing and self-governing are used interchangeable. The
attention, study and analysis in self-* properties, particularly
self-adaptive, correspond to the interest of several areas of
knowledge in dealing with problems with complexity and
difficult to manage with traditional approaches [17], [18].

Characterization of Self-* Systems: As Self-* Systems per-
meates a wide set of properties, and their particular behaviors,
the concrete architecture of a self-* system may vary from
one to another depending of which ones are implemented.
Moreover, a general approach for self-* systems can only point
out the basic elements, conditions and mechanism, looking
more as a guideline than an architectural model. Today self-*
systems draws upon several well developed technologies that
may be used as building blocks[19]. The idea of programs that
reason about their own behavior and are able to manipulate
their own semantic representation at runtime is not new, in fact
it’s very well founded and developed. Reflection and exception
handling mechanisms are techniques that can be found in the
majority of Programming Languages and support the basic
traits of adaptivity. Reflection has been around long enough
for efficient implementation methodologies to be developed.
Reflection provides the tools for writing such programs but it
doesn’t provide any guidance in how it should be done. To
help addressing this challenge there are many other contribut-
ing technologies , such as: model-based computing, theorem
provers, models for reasoning about uncertainty, and agent
based systems to name a few. [19].

From design perspective, as pointed out in [20] three
metaphors have been useful to early researchers on self-
adaptive software: coding an application as a dynamic plan-
ning system, or coding an application as a control system,
or coding a self-aware system. In each case, self-* systems
features are mapped into the paradigm’s structure (planning
system, control theory, or self-aware) aiming that some valu-
able insights and techniques can be borrowed to self-adaptive
systems.

The work in [21], [22] sum up some of the effort performed
by Software Engineering community to analyze models and
patterns that can be applied to develop self-adaptive systems.

B. Cybernetics
Cybernetics is, in general terms, defined as the science

that studies the abstract principles of organization in complex
systems, focusing in how systems use information, models,
and control actions to steer towards and maintain their goals,
while overcoming difficulties [23]. By being inherently inter-
disciplinary, cybernetic reasoning can be applied to understand
systems of any kind and it has influenced many fields included
computer science, robotics, management, sociology, political
science, economics, psychology and philosophy.
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The field of cybernetics was created after WWII by a group
of intellectuals interested in studying ”circular causal and
feedback mechanisms in biological and social systems” to
develop a general theory of organizational and control relations
in a system [23].The first use of the term in English was at
1948 by mathematician Norbert Wiener in its seminar book
”Cybernetics: Control and communication in the animal and
the machine” [24]. There, Wiener states that Cybernetics is
the study of communication and control in animals and
machines, communication being the receiving and digesting of
information, and control the use of this information in a direct
action. Wiener’s approach is in fact mechanistic, correspondent
to the kind of machines used back on the days, and its known
as Cybernetics of the 1st order or first-order Cybernetics.
According to Beer in [25]: ”cybernetics studies the flow of
information round a system, and the way in which this infor-
mation is used by the system as a means of controlling itself:
it does this for animate and inanimate systems indifferently”.
Later, organization theorists regard Cybernetics as a science of
information processing, decision-making, learning, adaptation,
and organization, whether this occurs in individuals, groups,
organizations, nations, or machines [26].

After the Control Engineering and Computer Science
disciplines become fully independent, some remaining
cyberneticians felt the need to differentiate from the
mechanistic approach by emphasizing autonomy, self-
organization, cognition, and the role of the observer in
constructing the model of a system. In this approach the
system being study is interpreted as an agent in its own
right, interacting with another agent, the observer. Hence,
the observer too is a cybernetic system, trying to construct
a model of another cybernetic system. To understand this
process, we need a ”cybernetics of cybernetics”, i.e. a
”meta” or ”second-order” cybernetics. Therefore, 2nd. Order
cybernetics, tries to understand adaptive autonomy and,
further, shifting adaptability.

Nowadays, the second order perspective is firmly ingrained
in the foundations of cybernetics overall. It is undeniable
that many of the core ideas of cybernetics were assimilated
by other disciplines, or inspired the development of new
contemporary fields, and hence, continue influencing scientific
developments. More generally, the philosophy of cybernetics
is starting to permeate popular culture.

1) Cybernetics Model: According to [27] the operation of
cybernetic systems can be characterized by a cycle with five
stages, as shown in Figure2:

1) goal activation, this stage is about discovering goals,
intentions and expectations that can be achieved, in
the current state of the system. The triggering of this
stage is the perception of an event (any kind of stimuli,
disturbance, perturbation) from the environment through
the system’s sensory mechanism. Selecting the features
of a system to pay attention to is inherit in the perceptual
process;

2) action selection, this stage enacts the decision making
mechanism of the system. Based on the goal it pursues

this stage select the suiting plan or strategical actions,
depending of the repertoire available, for achieving it;

3) action, this stage is responsible for the execution of the
strategy, the implementation of the necessary context
and the detailed directions for the actual behavior of
the system in the environment;

4) outcome interpretation, at this stage the system retrieves
the data and facts from the environment to interpret the
consequences of the behavior performed before. This
information is passed to the system as feedback using
memory updating and storing. Some of the criteria used
to elaborate the feedback are: effects on the environ-
ment, collateral effects in the system, and nature of the
outcomes (long term vs short term, abstract vs concrete,
approach vs avoidance);

5) goal comparison, this stage is about examination, de-
liberation and revision of the information from the
feedback to reveal the achieving of the selected goal. If
the goal has not being achieved yet, then some actions
may be done to approach its completion. This actions
can be towards to take advantage of an opportunity, or
for avoiding a threat. Finally, some actions promoting
changes in the system may be requested. This can be
sum up as analyzing the mutual influence between the
system and the environment in which it performs.

Fig. 2. Cycle in Cybernetic systems

These elements can be divided into two basic categories:
• First,there is a collection of mechanisms that evolved

to carry out the different processes associated with each
stage of the cycle. The mechanisms called into play by
encounter with uncertainty are of two fundamental types,
reflecting the unique status of the unknown as the only
class of stimuli that is simultaneously innately threatening
and innately promising: Stability and plasticity. The first
of these needs is to maintain the stability of ongoing
goal-directed functioning. The second is the need to
engage in exploration that integrates novel or anomalous
information with existing knowledge. Stability reflects
variation in the control mechanisms that prevent the
cybernetic system from being disrupted by emotional
impulses.Stability reflects the capacity of the cybernetic

WTA 2018 – XII Workshop de Tecnologia Adaptativa

40



5

system to resist disruption. The term ”plasticity” is prob-
ably most often encountered in neurobiology, but here we
understand plasticity as the general tendency toward ex-
ploration, with exploration defined as the creation of new
goals, interpretations, and strategies [27]. All exploration
involves learning).Plasticity reflects the degree to which
the cybernetic system is prone to generating new goals,
interpretations, and strategies, not only when required by
stressors that have caused instability and disintegration,
but also voluntarily, in response to the incentive reward
value of the unknown;

• Second, stored in memory is a collection of goals, actions,
and knowledge about the world ( strategies, standards,
behavioral repertoire, and patterns that exist in the world).
Most of these are learned through experience rather
than innately preprogrammed. These learned, updateable
memory contents of the cybernetic system are deployed
by the mechanisms described in the first category. Goals,
interpretations, and strategies represent the information
used by the cybernetic system to function in any situation,
and they always reflect the manner in which the individual
has adapted to that situation, even if they are one-
off, never repeated. This means that not all adaptations
are characteristic. To be considered ”characteristic,” the
adaptation must have enough stability to be a useful
descriptor of the person for some reasonable length of
time.

2) Cybernetics and Adaptive behavior: Following the ap-
proach given by Wiener in [24] cybernetics can be also
understood as the study of goal-directed self-adaptive systems
[27], [28], [29]. By being a general theory of the regulation of
systems it can be use as a framework to study management and
organizations, encompassing adaption, self-organization and
reflexivity. Cybernetics, as mentioned before, had a crucial
influence on the birth and developing of various modern
science [23]. Particularly, complexity, self-organization, self-
reproduction, autonomy, networks, connectionism and adap-
tation were concepts first explored by cyberneticians during
1940’s and 1950’s [23].

All cybernetic systems receive feedback, through some kind
of sensory mechanism, indicating the degree to which they are
moving toward their goals and use this information to adapt
and adjust their behavior, to pursue their goals. As explained
in [26], Adaptivity is related to improvement, better suiting the
conditions of an environment or enhance the performance of
an entity. Ashby’s theory of adaptation explains the success
of process improvements methods based on the distinction
between working IN a process and working ON a process.
Work IN a process refers to the work done to make the process
function. Work ON a process is the ”discussion” about how
to improve the process. Ashby show that any system having
two nested feedback loops, one inside the other, would be
able to display adaptive behavior. The inner loop operates
frequently and makes small adjustments, the outer feedback
loop operates infrequently and initiates the learning of a new
pattern of behavior. Adaptation encompasses learning.

C. Complex Systems

In both Engineering and Science the term complexity, does
not have a sharp definition and the demarcation with the
notion of complicated systems is a challenge [30], [31], [32].
However, this does not forestall a rigorous approach to the
subject matter.

A system is considered complex if it have many components
that collaborate to create a functioning whole. The function
of such system is governed by the dynamical interactions of
the components (within the system and with the environment)
and cannot be fully understood by the description and analysis
of its parts in an individual manner, as with the reductionist
approach [33]. Complex systems are characterized, and dis-
tinguished from complicated systems, by two factors: (i) it
exhibits unexpected behavior, often referred as emergence of
properties, as consequence of non-linear interactions between
its parts, framed by the hierarchical structure that build up the
system, and (2) the uncertainty in predicting the behavior of
the system, named unpredictability, due to continuous change
in function and structure [30], [33]. The description of such
a system can be done in different levels and from different
perspectives, which means that complexity is subjective and
it describes the stance that is being taken towards a system
[31], hence the definition becomes unclear and arbitrary.

Traditionally, literature on complexity has tended to come
from scientific domains taking a systems perspective, such
as social and natural sciences, biology, sociology, philosophy
which have frequently question emergent behavior, adaptivity
and evolution. However, other areas of knowledge have turn
to complexity as a way to get answer at questions that would
otherwise remain inaccessible and to offer a key to new kinds
of understanding [30]. Therefore, Complexity has become a
highly interdisciplinary topic today, building bridges between
several fields. This reflects the fact that most real-world
systems are complex, and so increasingly are our technologies.
As pointed out in [34] complexity is considered an inherent
feature of the matter, being nature its ultimate source[35], and
so is technology.

According to [30] the field of complexity studies has
split into two subfields: the study of Complex Physical sys-
tems(CPS) and the study of Complex Adaptive Systems(CAS).
The former studies has a set of tools and questions centering
on elements with fixed properties and has let to a better
understanding of physical phenomena. The latter deals with
elements that are not fixed, usually called agents, that learn or
adapt in response to interactions with other agents, continually
exchanging information.

1) Characterization of Complex Adaptive Systems: Com-
plex system, due to its study from different perspectives,
present a challenge when trying to organize the features in-
volving its functioning and structure. In [36] Holland proposes
a general way of charactering Complex Adaptive Systems
by seven basics: four properties(p): aggregation, nonlinearity,
flows and diversity, and three mechanisms(m): tagging mech-
anism, internal models and high-level reorganization patterns.
These seven principals intent to be a framework to organize
the different features present in complex adaptive systems.
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They are not the only basic features that could be selected
from all the complex systems, although, most of the other can
be derived from appropriate combinations of them. Actually,
literature present different analysis of complex systems charac-
teristics according to models or basic theory. Another approach
to analyze is presented in [34] where the author elaborates
table summing up the basic Properties of Complex Systems
and its comparison with other systems.

In the following is a list, even though not exhaustive,
we collected the main characteristics identified in Complex
Systems from seminar literature in the field [30], [37], [36],
[32], [33]:

• Self-Organization: as the ability to structure and re-
structure themselves, to learn, diversify and increase their
complexity;

• Decentralization of decision making;
• Nonlinear relationships or interactions between its com-

ponents: a small change in the system can lead to
disproportionate effects;

• Learning capacity: a computational mechanism by which
a cognitive system could iteratively build up a detailed
and hierarchical model of its environment;

• Default hierarchical structure to organize and manage
the behavioral laws at different levels. A hierarchical
structure is the natural consequence of the aggregation
property mentioned in [36];

• Feedback mechanism: reinforcing learning actions are
self-enhancing and lead to better performances or avoid
threads in future behavior;

• Path dependency and historical information: the state of
a complex system at any point in time depends on the
sequence of events and decisions that preceded that point.
This way learning and action mechanisms would allow
the system to adapt without losing what it had learned in
the past;

• Emergent behavior;
• Balancing two forces or operations: one reinforcing

growth by taking advantage and keeping already known
successful configurations (exploitation), and the other
aiming at discovering new combinations of traits that can
retrieve better building blocks yet unknown (exploration);

• Mindset and models: all complex systems creates and
use internal models to prosper: This models can be of
different nature: tacit or explicit, learned in a single
lifespan or through evolution. Models represent both: the
own adaptive agents and the environment in which it
perform. It is common the models interact with stored
knowledge as a way to bring efficiency to the functioning
of the system;

• Adaptive interactions: the agents of complex system
can perform adaptive actions to process change through
behavioral rules continually adjusted through evolution
and learning;

• Perpetual novelty, it is unlikely for it to reach an optimal
or equilibrium.

2) Adaptation within this perspective: Some of the afore-
mentioned characteristics even when not mentioning adaptivity

directly depend upon this faculty to develop a technique
for processing continuous change. Feedback, learning, self-
organization, aggregation and balancing the dichotomy of
forces are some of the characteristics at systems’ level that
laid upon adaptivity to achieve its major goals.

The direct mention of adaptivity is particularly granted to
elements of the system, the agents. Agents in CAS have three
levels of action:

• Performance: designates an agents’ behavioral repertoire
at a point in a time. It is often modeled as a set of
rules and signals, and described via signal-processing
approach. An agent is sensible to its environment via
detectors and effectors.

Adaptation happens by changing the signal-processing rules,
which corresponds to changes in the structure of the associated
network. To implement such a change the CAS needs that
agents be able to:

• Credit assignment: an agent requires a means of assigning
a quantity (strength, grade), that rates the usefulness of
different rules in helping the agent to attain important
resources;

• Rule discovery: a mechanism to discover new rules by
combination and/or reorganization of atoms from success-
ful rules. The new rule is biased by the agent’s previous
experience.

In [36], Holland states that adaptation is the sine qua non of
CAS. He defines CAS as systems composed by interacting
agents described in terms of rules. These agents adapt by
changing their rules as experience accumulates. Moreover, in
[37] the authors state that lifelong research work developed
by Holland, recognized that adaption is central to fields that
concern populations of agents that must continually obtain
information from uncertain, changing environments and be
able to use it to improve its performance and chance of
survival, this extend the impact of studying adaptive behavior
beyond CAS.

This approach of complex system and adaptivity grant the
system with the freedom of working with several techniques
to implement the required mechanisms.

D. Autonomic Computing

Autonomic Computing is a term coined by IBM’s vice-
president, Paul Horn at 2001, while presenting the idea in
a keynote speech to the National Academy of Engineers at
Harvard University[38]. It describes systems that can manage
themselves, self-managing systems, given high-level goals
from human administrators[39], [40], [14]. The term resembles
the ability observed in the Autonomic Nervous System to
govern and regulates a whole set of body functions, such
as heart rate, body temperature, blood circulation and other
”involuntary” actions without the need for conscious human
involvement [39], [38], [41].The IBM initiative was formalized
in [39], [14], [40] as a Grand Challenge within the information
society, and particularly in the field of Information and Com-
munication Technology (ICT) due to the complexity produced
as byproduct of evolution in human society via automation.
In particular, computer systems and its applications, have
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experience an explosive growth in the last decades and now
nearly pervade every aspect of our life [41]. However, they
have reached the point in which the benefits that IT aims
to provide are threaten by its own complex infrastructure,
making them difficult to manage and use [39].To cope with this
challenge, autonomic computing systems need to be capable
of running themselves, adjusting to varying circumstances and
preparing their resources to handle the workloads that we put
upon them [39].

To build such high-level systems the authors in [39], [14],
[40] describe the 8 key characteristics shown in Fig. 3 and
detailed as follows.

Fig. 3. Key characteristic of Autonomic Computing Systems. Adapted from
[39], [14], [40].

In detail:

• Self-awareness and context awareness are inherent char-
acteristics of Autonomic Computing systems regardless
of the specific task each one performs. Any Autonomic
Computer system must be able to observe their own
structure an behavior to adapt or modify it, and be aware
of its environmental and operational context [42].

• Self-configuring, self-healing, self-optimizing and self-
protecting are the core capabilities that support self-
management in Autonomic Computing. The works on
[39], [40], [38] offer detailed descriptions and analysis
of this capabilities.

• Hidden the complexity from user which implies auton-
omy in the process of decision taking to achieve the high-
level policy given by the user.

• Openness, meaning that an autonomic computing system
must be designed to operate in an heterogeneous environ-
ment, interacting with other technological elements (au-
tonomic or not)[41]. Additionally, autonomic computing
systems must be portable across multiple platforms [38].

The essence of Autonomic Computing initiative is to build
self-managed, the intent of which is to free system admin-
istrators from low-level technical task, such as configuration,
installation, updating and other system operation and mainte-
nance tasks [40], to focus in high-level activities. It’s worth
notice that the automatic systems only performs the tasks

that IT professionals choose to delegate to technology through
policies.

1) Autonomic Computing Model: In [14] IBM describes
a proposal for the necessary architectural building blocks,
organization and behavior to build self-managing autonomic
capability. The proposed architecture has two levels: systems’
level and autonomic manager’s level. At system’s level the
architecture organizes the elements in a hierarchy, as shown in
Figure 4, governed by the manual managers, or IT specialists
and assisted by knowledge sources.

Fig. 4. Autonomic Computing reference architecture. Extracted from [14].

Layer 1, contains the managed resources (hard-
ware/software, local/distributed), which may have embedded
self-managing attributes. The resources, its types and scopes,
define a set of decision-making context that are used to classify
the purpose and the role of a control loop within the autonomic
computing architecture. Layer 2, add a standard interface for
accessing and controlled the resource called touchpoint. Layer
3 contains the touchpoint autonomic manager that interact
directly with the touchpoints of managed resources to embody
different tasks that support self-managing capability. Layer 4
contains autonomic managers that orchestrate other managers,
they are the responsible for delivering the system-wide
autonomic capability by implementing control loops that have
the broadest view of the infrastructure.

At autonomic manager’s level, the components must im-
plement the architecture known as MAPE-K(Monitoring-
Analyzing-Planing-Executing-Knowledge) architecture. Fig-
ure 5 shows the MAPEK architecture and its general elements.
According to IBM, an autonomic manager must have the
following features to exhibit self-managing properties [14]:

• An automated method to collect the details it needs from
a managed resources, via touchpoint sensor interface and
correlate them into symptoms that can be analyzed. This
function is named Monitoring;

• An automated mechanism to observe and analyze situa-
tions to determine if some change needs to be made. To
do so, in many cases, these mechanisms model complex
behavior to employ prediction techniques. These mech-
anisms allow the autonomic system to learn about the
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environment and predict future behaviors. This function
is known as Analyzing;

• A mechanism that constructs the actions to enact a desired
alteration in the managed resource, known as change
plan, and logically passes that set of actions to the execute
function. This mechanism can take many forms, goes
from a single command to a complex work-flow. This
function is known as Planning;

• A mechanism to schedule, control and carry out the
actions on the plan change over one or more managed
resources using the touchpoint effector interface of a
managed resources. Finally, this function is known as
Executing.

These mechanisms communicate and collaborate with one
another and exchange appropriate knowledge and data. The
information within the knowledge database consists of par-
ticular types of data (policies, symptoms, metrics, and logs)
that can be access and/or modified by the mechanisms in the
autonomic manager.

Fig. 5. Internal architecture for autonomic managers. Extracted from [14].

2) Adaptivity within Autonomic Systems: Adaptivity is the
ability that supports the architecture of Autonomic Computing
at both, system and component level. At a general level, the
focus of Autonomic Computing approach is the design and im-
plementation of self-management systems, which, according to
[8], inherently laid upon adaptivity as main function. At the
system’s level the ability for rearranging components, within
and between levels, exercises adaptivity to create, update or
drop relations at run-time and as information arrives. More-
over, the self-* properties mentioned in the key characteristics
for Autonomic Computing again laid onto adaptivity to process
change. Finally, at component level, mechanism and elements
organize too the basic elements to implement adaptive behav-
ior. So adaptivity is present at Autonomic Computing as the
backbone function to process dynamic change.

IV. HOLISTIC VISION

In general terms an adaptive program can be describe as
a computer program that is able to evaluate its own behavior
and make some changes in its own configuration (structure

and functionality) at runtime when, due to new conditions
perceived in its environment, its evaluation indicates :(i) that
the program is not accomplishing its reason to exist, or (ii)
that better functionality or performance is possible.

The variability of such a description allows formulating
problems in different areas that involves optimization made
difficult by substantial complexity and uncertainty where in-
formation must be exploited as acquired so that performance
maintains or improves apace. Problems with this characteris-
tics are pervasive and occur at critical points in different fields,
as we have seen in the previous section, and even when the
formulations to solve those problems can have a variety of
guises, they give rise to the same fundamental questions.

A unified theoretical framework provides opportunities for
identifying common interactions, methods and difficulties
faced when studying adaptivity.

In the following subsections we will present the common
ground of the four technological approaches to deal with adap-
tive behavior. We will draw the necessary conditions for the
existence of adaptive behavior, the main properties observed
in adaptive systems, and the characteristic of the problems that
can found benefits in the use of adaptive behavior.

A. Necessary Conditions

• Awareness[43], [33], [44] : both self-awareness and con-
text awareness. The former allows the program to inspect
its own current configuration and recognize new needs
and evaluation. The latter allows the program to perceive
particular events in its application domain;

• Models[7] : system or internal model and environmental
model. They can be either implicit and learned over
evolutionary time, i.e. evolutionary computing, or explicit
and learned (or given) over a single lifespan. The latter
allows the program to reason about the impact of new-
coming events in the environment in its own performance.
Both models also allow the implementation of mecha-
nisms of predictions that assist the program in decision
taking during its functioning;

• Hierarchical structure[37]: hierarchy allows the applica-
tion and managing of behavioral rules according to the
level of abstraction of the entities and their capabilities;

• Characteristic response[37]: The normal or standard be-
havior that the program should perform under no chang-
ing conditions. This is the basic behavior over which the
modifications, the adaptations, will be developed;

• Monitoring and selection Mechanism [44]: the mech-
anisms responsible for perceiving and filtering events
in the environment and selecting plan and strategies to
respond to them;

• Autonomy[43], [33]: the capacity to perform reasoning
over its own behavior and control and acting to modify
it without depending on human intervention;

• Learning Method [33], [44]: also called Learning Cycle.
This is the part where the adaptivity per se is performed;

• Memory[37], [7]: stored knowledge.
Particularly, the learning method need to implement some

basic elements:
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• Feedback loop [44], [36]: the actions taken to modified
the behavior and its consequences are incorporated in
the stored knowledge, to generate better predictions and
refine the desired behavior;

• Structural modifiers or operators [37], [7]: the elements
responsible for implementing the direct modifications and
its propagation. They implement the adaptive plan or
strategy;

• Mechanism for comparison and assessment [44], [37], [7]
: are the mechanism that allows the program to evaluate
how convenient are different alternatives to modify its
behavior.

B. Properties observed in Adaptive Systems

• Open-endedness [33], [37]: they are in dynamic stability,
never achieve equilibrium due to balancing two opposite
forces (exploitation vs exploration, or balancing loop vs
reinforcement loop, or homeostasis vs homeorhesis).

• Continuity [33], [36], [7], [37], [44]: they are always
perceiving changes;

• Traceability [30], [7];
• Self-* properties: usually adaptivity is used to manage

the changes to achieve one or more self-* properties;
• Emergence and Propagation of features[44], [37];
• Exhibition of high-order patterns[37]: the mechanism and

patterns used to implement adaptivity are not simple
strategies and use sophisticated tools;

• Operation at multiple spacial and temporal scales.

C. Problem Characteristics

By identifying the main characteristics of a problem it
is possible for a researcher to focus on searching resources
(methods, tools, mechanisms and so on) that are aligned
with the purpose of dealing with such characteristics. In
this context, adaptive behavior has been credit as a good
alternative in helping answering problems with the following
main characteristics:

• Complexity [43], [32], [37], [7];
• Uncertainty [43], [32], [37], [7];
• Nonlinear interactions [32], [44];
• Changing Environments [37];
• An implicit optimization principle: the goal is to do the

best by improving performance, and/or enhance/maintain
the chance for survival with available resources [44], [37],
[7].

V. RELATED WORK

Related work naturally draws from several fields due to
the multidisciplinary nature of adaptive behavior. We address
related work from an unified vision of adaptivity. The most
efforts to create an holistic approach comes from Complex
Systems field and lately from Self-Adaptive Software Engi-
neering. In complex System, Holland efforts for building a
general theory of adaptation in complex systems are reflected
in [36], [30], [37]. Moreover, the Santa Fe Institute[45] is one
of the top institutions to research complex systems with a

broader approach. The authors in [31] present another effort
in develop a unified theoretical and practical framework for
Complex Systems. Other researchers have taken the formal
languages approach as a base to generate an unified model for
adaptive software, such as [46], [47], [48], and other have tried
to extend the concepts,models and architectures within their
fields to cover different approaches, such as [41]. In [49] with
can observe a unified an hybrid approach between cybernetics
and formal methods.

From the field of Software Engineering, some efforts have
been made for the better understanding of adaptivity. In
literature we can find some of the authors from different
backgrounds presenting a vision of integration with fields
such as control theory [50], multi-agent systems [51], active
software and so on [19]. In [21], [21] the authors explore
architectures and models of Software Engineering and Testing
for adaptive systems. With the same purpose some researchers
have develop design patters for adaptivity [52].

However, the lack for a general examination that helps
researchers in mapping elements from one approach to the
other is the gap we are trying to fill with this work.

VI. CONCLUSION AND FUTURE DIRECTIONS

By the end of this work we have come to the following
conclusions:

• In the same sense that was previously mention in [32] the
building of a common ground framework, where elements
intent to be in its basic form, allows the appropriation
of concepts and results from other complex systems for
the purposes of explaining this concepts within adaptive
technologies.

• Understanding the participants involved in adaptive be-
havior allows to identify core components, even when
named under different terminologies, that perform the
same task. By doing so it is possible to establish parallels
between theories and techniques, resulting in opportuni-
ties to share knowledge [35].

• This holistic approach based on aggregation gives free-
dom to the researcher to integrate techniques, mecha-
nisms, algorithms and other technological resources to
different frameworks, representation or architectures ac-
cording to the particular kind of adaptive behavior it
needs to perform.

• Cross-comparisons provide the advantage of putting in
evidence some characteristics that in one field are subtle
and hard to extract while in other are salient and easy to
examine [36].

Future work in the effort for building an holistic understand-
ing of adaptivity are:

• Standard terminology should be build up because the
current domain specific terminology does not help the
holistic approach by being ambiguous or sometimes
overlapping.

• Exploration and incorporation of new approaches for
adaptivity in other fields to empower and support the
holistic approach. In this sense, this work pretend to be
only a small but significant contribution to such common
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approach from the perspective of computing, we enthusi-
astically encourage researchers from other areas dealing
with adaptive behavior to take an holistic approach and
complement this effort.

• Elaboration of scientific analysis from areas such as
Bibliometrics, Semantic Analysis and Semiotics can bring
highly valuable information about how adaptivity is un-
derstood and the meaning it carries, helping to refine the
holistic model. This studies are beyond the scope of the
present work, but we encourage researchers in these areas
to contribute with such an specialized knowledge to a
common approach.

• Study of models and approaches for different parts of
software development besides design and implementa-
tion, such as: testing, benchmarks,and others.

• Experimentation with hybrid approaches by exercising
component model approach and aggregation properties.
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