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Abstract— Global economic development has the 

disadvantage of increasing the population in large urban centers 

that causes an increase of vehicles traffic in cities and results in 

traffic jams. Several researches have been developed to provide 

solutions to the problem of urban traffic. This work aims to 

apply the Bio-Inspired Neural Network model to control urban 

traffic semaphores. The proposed model was obtained and 

developed in previous works in the research group. Therefore, 

this paper presents the evaluation of the model applied on a real 

scenario of the big cities through simulations considering 

characteristics such as: vehicle speed, streets and avenues 

lengths, traffic semaphore positions and different traffic 

demands. The chosen scenario is the Paulista Avenue in the 

central region of city of São Paulo, well known for its high traffic 

demand. The Bio-Inspired Neural Network algorithm was 

compared with the fixed-time control, which is currently used for 

the control of semaphore phases in the city of São Paulo. The 

behavior of control algorithms were compared for low, average 

and heavy traffic demands. The performance indicators used 

were the average travel time of the vehicles and the level of 

occupation of the roads. The results show that the BiNN model is 

better in all the simulations made, with the different situations of 

traffic demands. Tests results show performance up to 44,67% in 

terms of average travel time, if compared to the fixed time 

control. 

Keywords—Bio-Inspired Neural Networks; Traffic Lights 

Control; Semaphore Control; Urban Traffic Control; Travel 
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I. INTRODUCTION  

The development and growth of large cities today is 
governed by economy and social development. This explains 
how the urban population has increased significantly in recent 
years, according to [1]. In 2007, urban population exceeded the 
rural population, suggesting that by the year 2050, the urban 
population will represent 70% of the world population. Hence, 
the researchers present solutions that seek to improve the 
solutions to the problem of overcrowding in large urban 
centers. For this reason the researches are conducted to solve 
fundamental questions, in subjects such as: energy, sustainable 
development, security, housing, health and transport [2]–[4]. 

Transportation is a key issue for the urban development of 
cities. Solutions to problems related to this area are still a 
challenge for researchers. When the number of people in a 

space of similar size increases, vehicle traffic increases as well, 
being a serious problem faced today in large cities [5], [6]. 
Increasing the infrastructure of roads and highways, public 
transportation, and intelligent control at street crossings are 
some of the actions to be taken to solve transport problems. 
Semaphores are devices commonly used to control 
intersections, therefore, an optimum adjust of the time of each 
phase of traffic can help considerably as it could prevent traffic 
jams on the roads [7]–[13]. 

Many studies have been proposed to control the time of 
each phase at a semaphore. The unpredictable nature of traffic 
demand makes the task of optimizing the control more 
difficult. As a consequence, the most varied types of 
algorithms and methods are found in the literature, although 
modern urban traffic control can now be divided into two 
groups: Theory of Optimal Control and Artificial Intelligence. 
[8]. 

An adaptive semaphore controller is proposed by Taranjeet 
Kaur et al. in [13]. The controller uses neural networks and 
genetic algorithms to adapt the semaphore schedule according 
to the congestion of each intersection. The neural network 
receives the signal times as the input and provides the length of 
the queue as the output. Another example of the use of neural 
networks is presented in [10]. Authors proposed an optimum 
adjustment in the signal traffic times, concluding that most of 
the time, performances of the two proposed algorithms have a 
similar behavior, but significantly higher than the fixed-time 
controller. Another observation of that work is that the 
algorithm is proposed and tested only for a single semaphore 
crossing. 

Finally, in [14], a Biological-inspired Neural Network 
(BiNN) is proposed and developed, being able to continuously 
monitor the system status and make decisions. The proposal 
establishes a multi-agent system concept and allows the 
coordinate control of several crosses. The vehicle queue size at 
the intersections of the streets is considered as the system entry 
variable. Furthermore, it proposes a method for determining 
parameters according to the desired behavior and provides a 
method for stability analysis. The algorithm is validated using 
an urban mobility simulator and compared to a conventional 
iterative controller. Results show better controlling behavior 
even in low, moderate and heavy traffic situations. This model 
extends to a multi-agent model where each agent controls a 
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single intersection of the street and interacts with the neighbor 
agents to achieve coordinated control of the various crossings. 
The proposal prevents the saturation of the streets and 
coordinates the activities of the neighboring agents causing 
green lights at the semaphores. 

Following sections presents the application of BiNN 
algorithm for semaphore control in a real scenario. Section-II 
presents some definitions of BiNN algorithm and explains the 
equations that describe the model. Description of the scenario 
and the simulation setup is shown in Section-III and Section-IV 
respectively. Section-V presents and analyzes the results 
obtained during the simulation. Finally, some concluding 
remarks are presented in Section-VI. 

II. BINN ALGORITHM 

BiNN was proposed and evaluated in [14] considering 
hypothetic traffic scenarios also testing its behavior in 
controlling dynamic systems. Indeed, authors analyzed its     
stability and adaptability.  The BiNN adopts biological 
characteristics, such as inhibitory synapses and mechanisms of 
adaptation of neural networks. Therefore, in this case, BiNN 
show better performance than artificial neural networks, and 
has the advantage of not requiring training period. This model, 
according to [8] and [15], has low computational cost and the 
mechanism of short-term plasticity and the oscillatory behavior 
facilitates the change of semaphore phases. Another advantage 
of the proposed method is the continuous monitoring of traffic 
status and decision making. 

BiNN equations for urban traffic control system of this 
paper is proposed in [15], and presented in equations (1), (2) 
and (3): 

 



 

 

Equation (1) determines the activation function A of a 
neuron i at time t+1 based on the weighted sum of its N inputs 
Q. Equation (2) is a sigmoid function whose slope is 
determined by m and represents the activation function of 
neurons. It generates the output O of a neuron, based on its 
activation A and the displacement s of its activation function, 
which represents the mechanism of adaptation of the model 
(intrinsic plasticity). The factor m only represents the slope of 
the curve. Equation (3) determines the displacement s of the 
activation function of a neuron i based on its output, v is the 
adaptation coefficient, which is a small constant value that 
determines the rate of adaptation of the neurons. 

According to [7], this model is split in two parts: 

 Control of the phase change of semaphore at an 
intersection. 

 Coordination of intersections that is responsible 
for green waves.  

A. Control of an intersection 

The structure shown in Fig. 1 is used to control each one of 
intersection. Each set of neurons (p, h, q) represents a 
semaphore phase. Considering n intersections, the whore 
structure will have n neurons sets. The neurons p1,2...n are the 
excitatory ones, q1,2...n are the sensory neurons, h1,2...n are the 
interneurons and qa,b,c,d are the sensory receptors, which 
measure the occupation of the relative pathways, representing 
the inputs of the system. 

  

Fig 1. BiNN model structure for semaphore control 

B. Coordination of intersections 

For the coordination of intersections, the structure shown in 
Fig. 2 is used. The neuron of the semaphore phase 1 of 
intersection A is represented by p1,A, while p1,B represents the 
same semaphore phase of intersection B. Hence, the traffic 
phases that control vehicle flows in the same direction are 
coordinated. Furthermore, qa,A and qa,B are the sensory 
receptors of intersection A and intersection B, respectively. All 
other neurons of the first structure are not considered in the 
control of intersections [14]. 

 

 

Fig 2. BiNN model structure for a semaphore coordination 

 

(1) 

 

(2) 

 

(3) 
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The structure in the Fig. 2 has two basic operating 
principles: 

 Storing the information when a semaphore has 
been activated until the corresponding semaphore 
of the next intersection is ready to become active. 

 Inhibit the next semaphore-phase in cases 
occupancy of the next intersection is activated, as 
a way to avoid the overflow effect. This action is 
performed by the interneurons b, which inhibit the 
p neurons in the forward direction according to the 
occupation of the next intersection. 

III. SCENARIO 

The city of São Paulo had big problems with the level of 
traffic bottling. It is one of the largest urban settlements in the 
world, according to  [16], with a population of 12,038,175 only 
in its metropolitan area, which has an extension of 1521.11 
km2, having a population density of 7,914.07 in habitants per 
square kilometers in its entire area. The city has a vehicular 
fleet of approximately 7 million vehicles and a road extension 
of approximately 17,000 km of streets and avenues [17]. As a 
result, São Paulo has one of the highest traffic levels, with 
frequently traffic jams of more than 150 km in the region of the 
expanded center at rush hour [17]. In such centre region, 
Avenida Paulista is one of the main avenues of the city, being 
the headquarters of the largest financial companies in the 
country, which means high concentration of people, as well as 
vehicles.  

The selected scenario has a total of 4.4 km of streets and 
avenues, with an area of approximately 0.5 km2, including 3 
parallel streets and 4 cross streets (see Fig. 3), with 10 
semaphores distributed in each intersection. This scenario has 
as border São Carlos do Pinhal street by the north and Alameda 
Santos street by the south, whereas the Alameda Joaquim 
Eugênio de Lima street and Teixeira da Silva street are the 
borders by the west and east, respectively. The distribution of 
semaphores is as follows: 4 semaphores in the Avenida 
Paulista, in its 4 intersections of this avenue with each 
transversal streets, and the other 6 semaphores in the streets 
that are to the north and south of this main route. There are 6 
semaphores that include three phases, the four that are in 
Avenida Paulista plus two, besides the other four semaphores 
has two phases. 

São Carlos do Pinhal street has only one-way traffic: east-
west with two lanes in most of its extension, Avenida Paulista 
has two-way traffic, each one with three lanes: east-west and 
west-east, Alameda Santos street has two lanes in the west-east 
one-way traffic.  Alameda Joaquim Eugênio de Lima has just a 
lane in a north-south way, Avenida Brigadeiro Luís Antônio 
has two lanes in both each north-south and south-north ways, 
Manoele da Nobrega street has two lanes in a south-north one-
way traffic, Maria Figueiredo street has just a lane from north 
to south way and lastly, there is Teixeira da Silva street, which 
also has just a lane, but in a south-north way. 

 

    

 

Fig 3. Map of  chosen scenario 

IV. SIMULATION 

The simulations were performed using the MATLAB and 
SUMO ("Simulation of Urban MObility") tools (see Fig. 4) 
[18], [19]. The BiNN model was programmed in MATLAB, 
while the model of the urban transit system was programmed 
in XML ("eXtensible Markup Language") used in the SUMO 
environment. To perform the simulations and analysis  of 
results, the protocol TraCI4Matlab [20] was used, which 
adopts the client-server paradigm and allows the interaction 
between SUMO (server) and MATLAB (client). All 
simulations have a duration time of 3600 seconds (one hour). 

For analysis of the results, six different types of simulations 
(see table I), three simulations with different levels of vehicle 
demand for each type of control algorithm were performed, 
Fixed-time control and BiNN control. 

  

Fig 4. Simulation of scenario in SUMO 
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TABLE I.  SIMULATIONS 

Simulation 

Number 

Simulations Descriptions 

Control Algorithm 

Value 

(vehicles/

second) 

Description 

1 Fixed Time Control 1.25 Low traffic 

2 Fixed Time Control 2.50 Average traffic 

3 Fixed Time Control 3.75 Heavy traffic 

4 BiNN Control 1.25 Low traffic 

5 BiNN Control 2.50 Average traffic 

6 BiNN Control 3.75 Heavy traffic 

The demand for 1.25 vehicles per second represents low 
traffic, while demand of 3.75 vehicles per second represents 
heavy traffic, so demand 2.50 represents a scenario with 
average traffic, as used by [8]. All vehicles used have the same 
characteristics, 5 meters long, with acceleration of 0.8 m/s2 and 
maximum speed of 13.89 m/s, which is the speed limit in urban 
regions according to [17]. In addition, the stochastic steering 
behavior (SUMO simulator parameter) is equal to 0.5 in all of 
tests.   

The routes of the vehicles were programmed with the same 
characteristics of the traffic routes described and observed in 
[17] and [21]. 

V. RESULTS 

The performance indicators adopted are the mean travel 
time of vehicles, which was used in the analysis made by  [14] 
and [22], and the level of occupation of the lanes in the 
scenario is the same as that was used by [8] and [9]. For 
calculating the average travel time of the vehicles was chosen 
to the east-west route of Avenida Paulista, which is the main 
avenue of this scenario and the city in general, and the average 
was obtained by measuring the travel time of 200 vehicles 
from one border to another of the select scenario. Fig. 5 shows 
the average travel time values obtained by the six types of 
simulations. 

 
Fig 5. Average Travel Time of vehicles 

For the low traffic level, the average travel time of vehicles 
with the BiNN control decreases by 62.74 seconds, which 

means more than one minute, which is a significant time for 
the analysis done on a stretch of avenue with 700 meters. For 
an average traffic level a difference of 123.63 was obtained, 
more than two seconds. Finally, for a heavy traffic level, the 
average travel time difference with the control algorithms 
applied was 155.79 seconds. We can conclude that the BiNN 
algorithm has a better response of traffic control than fixed 
times considering the average travel time. Moreover, its 
response improves with increasing traffic demand.  

Regarding the level of occupancy of lanes, the simulations 
performed provided the results shown in Fig. 6, Fig. 7 and Fig. 
8. The mean differences between the occupancy level of the 
lanes with the two control algorithms used are shown in table 
II. The reduction of this value can be justified with the results 
shown in the Fig. 9 and Fig. 10. While demand for traffic 
increases if the control designated to regulate traffic is not able 
to regulate the number of vehicles on the lanes, the scenario 
does not have enough space for new vehicles to begin their 
journey, therefore, the number of departed vehicles in the 
scenario with the average and heavy demand conditions and 
the fixed time control is lower than those that begin the route 
with the same demand and with the BiNN control. This 
situation is observed in Fig. 9, where the number of departed 
vehicles in the 6 simulations are shown. The difference of the 
numbers of departed vehicles in two types of control used in 
the simulation, in the case of the average demand level, is 1236 
vehicles, while in the simulation with the heavy demand this 
difference is even greater, 1636 vehicles. Therefore, if the 
number of departed vehicles is greater and the control provides 
a better response to the system, the number of vehicles arriving 
has been increased using the BiNN control, as shown in Fig. 
10. 

With the analysis of the average travel time values 
explained above, we can infer that the BiNN control algorithm 
has a better response for the three types of simulated traffic 
demand.  

 

Fig 6. Simulation with low traffic demand 
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Fig 7. Simulation with average traffic demand 

 

Fig 8. . Simulation with heavy traffic demand 

 

TABLE II.  DIFFERENCE AVERAGE IN ROAD OCCUPATION LEVEL 

Traffic demand 
Difference Average 

(number or vehicles) 

Low traffic 62.95 

Average traffic 41.11 

Heavy traffic 34.55 

 

It is necessary to emphasize that those results are obtained 
in a small section of the city, therefore they could increase as 
much as the analyzed scenario is larger. The average time of 
travel of the vehicles obtained was in an extension of 700 m of 
length of Avenida Paulista. The total length of this avenue is 
approximately 4 km. Therefore, if we increase the size of the 
analyzed scenario we would obtain larger differences between 
the average travel times with fixed time semaphore control and 
the proposed BiNN algorithm. The same could happen with the 
level of occupation of the lanes, which we are analyzing only 
in an area of 4.4 km of streets and avenues, compared to more 
than 17,000 km of roads that have the city of São Paulo.  

 

Fig 9. Number of vehicles departed 

 

Fig 10. Number of vehicles arrived 

VI. CONCLUSIONS 

This work describes the application of an algorithm based 
on Bio-Inspired Neural Networks for the multi-agent control of 
traffic semaphores, with the purpose of controlling urban 
traffic and reducing the level of traffic bottling. The algorithm 
was applied in a real scenario in the city center region of São 
Paulo obtaining good results, which were compared with 
results obtained with fixed times control. Test results show up 
to 22.89% performance under the low traffic conditions, 
26.35% under average traffic and 28.86% under the heavy 
traffic condition compared to the fixed time control, the 
performance indicators used for this comparison were the 
average travel time and the level of occupation of lanes. One of 
the main contributions of this paper is the ability to estimate 
the real impact on the traffic level that BiNN control could 
apply in the city of São Paulo. For further research, it is 
possible to analyze the performance indicators used in this 
work with increasing of the size of the scenario, the length of 
the vials and the number of traffic semaphores. 
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