
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 130 (2018) 1128–1133

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2018.04.159

9th International Conference on Ambient Systems, Networks and Technologies, ANT-2018 and
the 8th International Conference on Sustainable Energy Information Technology,

SEIT 2018, 8-11 May, 2018, Porto, Portugal

10.1016/j.procs.2018.04.159

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

initial graph +[(v1)↔ (v3)] +[(v2)↔ (v3)] −[(v1)↔ (v2)] −[(v1)↔ (v3)]

G0 :

v1 v2

v1 0 1
v2 1 0

 G1 :

v1 v2 v3
v1 0 1 1
v2 1 0 0
v3 1 0 0

 G2 :

v1 v2 v3
v1 0 1 1
v2 1 0 1
v3 1 1 0

 G3 :

v1 v2 v3
v1 0 0 1
v2 0 0 1
v3 1 1 0

 G4 :

v2 v3

v2 0 1
v3 1 0

Table 1. Considering G0, V(G) = {v1, v2} and E(G) = {(v1, v2)}. Supose there is a ∆(G)α = {(A(ψG(0)) = +[v1 ↔ v3]), (A(ψG(1)) = −[v1 ↔ v2])}.
Applying ∆(G)α over G0 it will become G1 afterA(ψG(0)) and then G2 afterA(ψG(1)). In G2, V(G) = {v1, v3} and E(G) = {(v1, v3)}.

1.1. Theme and Scope

Adaptivity focus on possible variance levels in software functionality18 the first level is of static program where
there is no change-over at all. The second one is of parametric programs which behaves according to input data. The
third level is of configurable programs whose behavior can be defined after compiling time. The topmost level is of
adaptive programs18 whose are capable to set and reset its own functionalities during run-time19.

In this sense, adaptivity is a Turing-equivalent17 rule-driven computing device15 as is λ-calculus, Post Machine,
etc. It is noticeable that Turing Machines direct thoughts in an essentially different manner than λ-calculus does
during programming activity. Such differences gave rise to programming paradigms such as imperative (based on
Turing Machine formalism) and functional (based on λ-calculus formalism)20. In other hand Post Machines did not
gave rise to any programming paradigm suggesting that it directs thoughts by a similar fashion as Turing Machine
or λ-calculus. Programming paradigms suggests that in addition to formal or observable dimension of programming,
there is also a cognitive meaning that must be addressed7. So, such analysis shall be performed to adaptivity in order
to verify if it leads to a new programming paradigm or to compose another existing one.

Such is not an easy analysis since there are not many known credited instruments to performs it8. As been stated,
one possibility to be explored is phenomenology but in computer science context it has been applied to human-
computer interface and user-experience studies5,10,13 but not as a research method. The only similar approach found
was of Hiroyuki7 but it intends to inspect the object’s duration while this study intends to explore the duration of
programmer’s perception. By the way there is not in the scope of this paper to perform a wide range analysis nor
provide a solid position over the theme; this paper aims to start a discussion within a proof of concept scope in order
to be further developed. Proof of concept is the application of an idea in order to verify its feasibility. The chosen
proof of concept object is the adaptive-graph proposal12 since it is not a wide subject as a computing model yet it is a
relevant computing tool to be of interest to address as it can be used as structure in many cases of data organization21.
Roughly an adaptive-graph is graph whose incidence function may vary during run-time12 and a graph is an ordered
triple G = (V, E, ψ) of vertices (V), edges (E) and incidence functions (ψ) connecting vertices and edges2.

Adaptive-graph Definition. An adaptive-graph is a four-tuple expressed by (V(G), E(G),∆(G),A(ψG) where V(G)
is a non-empty set of vertices; E(G) a non-empty set of edges which links a pair of vertices in the form {vx ↔
vy | vx, vy ∈ V(G)} (usually depicted as an adjacency matrix); ∆(G)k is an ad hoc triggered adaptation script composed
by an ordered non-empty set ofA(ψG), that can be ‘k’ adaptation scripts;A(ψG(j)) is an adaptation function that can
perform an edge inclusion +[(vx) ↔ (vy)] or an edge removal −[vx ↔ vy] (see table 1). The adaptive-graph must to
hold its both symmetrical and connected properties in a n × n dimension. It means that if a new vertice is created, it
must be both in matrix’s line and column (holds dimension). If there is no incidence to a vertice, it shall be removed
from matrix’s line and column (holds dimension and connection). If there is an incidence from vx to vy it also exists
an incidence from vy to vx (holds symmetry).

1.2. Problem Statement

As can be noticed from table 1 the adaptive-graph can be reduced to a set of subgraphs in a non-adaptive graph.
In this sense it is difficult to reason about differences among those two proposals through mathematics. Graph as
defined is a mathematical construction intended to be a static structure (it does not allow insertion or removal of nodes
and edges). This means that its computational representation shall be classified as a static data structure or first level

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.04.159&domain=pdf

 Francisco S. Marcondes et al. / Procedia Computer Science 130 (2018) 1128–1133 1129
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

2nd International Workshop on Adaptive Technology
(WAT 2018)

Programming Phenomenology:
Proof of Concept on Adaptivity

Francisco S. Marcondesa, Ítalo S. Vegab, Paulo Novaisa

aAlgoritmi Centre, University of Minho, Largo do Paço 4704-553, Braga, Portugal
bPontifical Catholic University of São Paulo (PUCSP), Rua Marques de Paranagua no 111, São Paulo, Brazil

Abstract

Phenomenology is the empirical study of mind and consciousness. Considering programming activity as a cognitive procedure,
phenomenology may be applied to address some of its issues. A particular issue of interest is how one programming approach
differs from others, i.e. the cognition performed when using an approach differs from the one performed using another? If they
are similar the two approaches are like to be the same, otherwise essentially different. Since adaptive computing proposal is
Turing-equivalent it may be discussed about the actual differences among those approaches. As an example, λ-calculus is also
Turing-equivalent but since the cognition performed is different it justifies the several λ-based existing approaches. In order to
accomplish such analysis, bergsonism will be used as phenomenological method to be applied in particular adaptive structure
called adaptive-graph. As a result it will be argued cognition performed using adaptive-graph is different from the one performed
when using non-adaptive one. Then it will generalized suggesting adaptive computing cognition shall be further explored.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Bergsonism; Adaptive Technology; Programming Phenomenology.

1. Introduction

A known problem when considering programming approaches is the existence of a “huge number of methods and
method variants, with little understood differences and artificially magnified”8. In other words, it is not easy to realize
actual differences among several exiting approaches in order to reason about advantages, scope of use, etc. as occurs,
as example, to the adaptive-graph12 proposal. In this sense, the central question of this paper is “what changes when
using the adaptive-graph?”. Since phenomenology is the empirical study of mind and consciousness22 the objective
that follows is to perform a phenomenological evaluation over the adaptive-graph proposal in order to understand how
does it direct one thoughts. Based on the provided understanding it may become possible to compare adaptive-graph
to other approaches and reason about its proper use. Applying phenomenology to several programming approaches
produces what may be called programming phenomenology.

∗ Corresponding author. E-mail: id7515@alunos.uminho.pt. Tel.: +351 912-236-927.

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

initial graph +[(v1)↔ (v3)] +[(v2)↔ (v3)] −[(v1)↔ (v2)] −[(v1)↔ (v3)]

G0 :

v1 v2

v1 0 1
v2 1 0

 G1 :

v1 v2 v3
v1 0 1 1
v2 1 0 0
v3 1 0 0

 G2 :

v1 v2 v3
v1 0 1 1
v2 1 0 1
v3 1 1 0

 G3 :

v1 v2 v3
v1 0 0 1
v2 0 0 1
v3 1 1 0

 G4 :

v2 v3

v2 0 1
v3 1 0

Table 1. Considering G0, V(G) = {v1, v2} and E(G) = {(v1, v2)}. Supose there is a ∆(G)α = {(A(ψG(0)) = +[v1 ↔ v3]), (A(ψG(1)) = −[v1 ↔ v2])}.
Applying ∆(G)α over G0 it will become G1 afterA(ψG(0)) and then G2 afterA(ψG(1)). In G2, V(G) = {v1, v3} and E(G) = {(v1, v3)}.

1.1. Theme and Scope

Adaptivity focus on possible variance levels in software functionality18 the first level is of static program where
there is no change-over at all. The second one is of parametric programs which behaves according to input data. The
third level is of configurable programs whose behavior can be defined after compiling time. The topmost level is of
adaptive programs18 whose are capable to set and reset its own functionalities during run-time19.

In this sense, adaptivity is a Turing-equivalent17 rule-driven computing device15 as is λ-calculus, Post Machine,
etc. It is noticeable that Turing Machines direct thoughts in an essentially different manner than λ-calculus does
during programming activity. Such differences gave rise to programming paradigms such as imperative (based on
Turing Machine formalism) and functional (based on λ-calculus formalism)20. In other hand Post Machines did not
gave rise to any programming paradigm suggesting that it directs thoughts by a similar fashion as Turing Machine
or λ-calculus. Programming paradigms suggests that in addition to formal or observable dimension of programming,
there is also a cognitive meaning that must be addressed7. So, such analysis shall be performed to adaptivity in order
to verify if it leads to a new programming paradigm or to compose another existing one.

Such is not an easy analysis since there are not many known credited instruments to performs it8. As been stated,
one possibility to be explored is phenomenology but in computer science context it has been applied to human-
computer interface and user-experience studies5,10,13 but not as a research method. The only similar approach found
was of Hiroyuki7 but it intends to inspect the object’s duration while this study intends to explore the duration of
programmer’s perception. By the way there is not in the scope of this paper to perform a wide range analysis nor
provide a solid position over the theme; this paper aims to start a discussion within a proof of concept scope in order
to be further developed. Proof of concept is the application of an idea in order to verify its feasibility. The chosen
proof of concept object is the adaptive-graph proposal12 since it is not a wide subject as a computing model yet it is a
relevant computing tool to be of interest to address as it can be used as structure in many cases of data organization21.
Roughly an adaptive-graph is graph whose incidence function may vary during run-time12 and a graph is an ordered
triple G = (V, E, ψ) of vertices (V), edges (E) and incidence functions (ψ) connecting vertices and edges2.

Adaptive-graph Definition. An adaptive-graph is a four-tuple expressed by (V(G), E(G),∆(G),A(ψG) where V(G)
is a non-empty set of vertices; E(G) a non-empty set of edges which links a pair of vertices in the form {vx ↔
vy | vx, vy ∈ V(G)} (usually depicted as an adjacency matrix); ∆(G)k is an ad hoc triggered adaptation script composed
by an ordered non-empty set ofA(ψG), that can be ‘k’ adaptation scripts;A(ψG(j)) is an adaptation function that can
perform an edge inclusion +[(vx) ↔ (vy)] or an edge removal −[vx ↔ vy] (see table 1). The adaptive-graph must to
hold its both symmetrical and connected properties in a n × n dimension. It means that if a new vertice is created, it
must be both in matrix’s line and column (holds dimension). If there is no incidence to a vertice, it shall be removed
from matrix’s line and column (holds dimension and connection). If there is an incidence from vx to vy it also exists
an incidence from vy to vx (holds symmetry).

1.2. Problem Statement

As can be noticed from table 1 the adaptive-graph can be reduced to a set of subgraphs in a non-adaptive graph.
In this sense it is difficult to reason about differences among those two proposals through mathematics. Graph as
defined is a mathematical construction intended to be a static structure (it does not allow insertion or removal of nodes
and edges). This means that its computational representation shall be classified as a static data structure or first level

1130 Francisco S. Marcondes et al. / Procedia Computer Science 130 (2018) 1128–1133
Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000 3

program according to software functionality variance scale18. Due to computer properties a computational graph must
be first constituted, which means that memory address must be allocate to hold graph structure and information; this is
done through an operation like “addEdge()”21. Since there is an “addEdge()” operation, broad interpreted operations
as “removeEdge()” are natural. By such implementation an static structure (level one) becomes an adaptive one
(level four); without an adaptive-graph like formalism there is no theoretical support for such implementation despite
it appears to be widely used. In this sense, since an graph and adaptive-graph implementations may coincide, it
becomes equally difficult to reason about those two proposals differences through computing.

Such difficulties can be expressed considering what Bergson1 called “extension”. Extension is the presence of
a degree difference among existing things, as an example any object may be reduced to another one in geometric
sense. In other hand when considering on object “final-cause” in Aristotle terms it becomes easier to reason among
differences. Bergson goes further and considers the final-cause (or essence) as temporary, i.e., an ever changing
condition within a flux that can be discretized as durations. Duration is perception, the perception of a consciousness
while it endures. This means that may be possible to qualitatively discuss the differences among graph and adaptive-
graph through programmer’s duration when using those tools. In other words it allows a qualitative analysis through
phenomenology14 since it aims to study the structures of consciousness as experienced from the first-person point of
view22. Bergsonism is a possible choice to a phenomenological approach9 once it is desired to address duration.

Summarizing, discussing the differences among graph and adaptive-graph through extension approaches leads to
several dim and fuzzy issues been a problem in itself. In this sense a phenomenological approach, i.e. a qualitative
personal experience description, which addresses duration as bergsonism may be helpful.

1.3. Bergson Philosophical Method

Bergsonism is the name used by Deleuze3 to denote Bergson’s efforts in philosophy. A issue that Bergson aimed
to handle is to bring precision to philosophy and to do so he proposed what he is called as a philosophical method
which intends to be in philosophy as precise as scientific method is to science1. It aims to provide a precise character-
ization of the study object (reaching its essence or defining its meta-model) allowing the derivation of deductions and
predictions. Objectivity is achieved through inter-subjective, in this sense an bergsonist hypothesis by be objectively
validated or rebutted by peers11. Yet it is not a method to be followed in an algorithm fashion, but it is based on some
principles that must be in sight when performing it. In this sense, both scientific and philosophical methods intends to
provide a rigorous and objective refutable/refineable description of the study object through a replicable method in or-
der to derive deductions and predictions. It shall be stated that recently some authors have been considered Bergson’s
philosophical method as a phenomenological approach9 as used in this paper.

The main difference among Bergson philosophy (or in this paper stated as “phenomenology”) and scientific method
is intention. Science mainly concerns with behavior or structure while philosophy (particularly metaphysics) mainly
concerns with primary causes that “forces” something to be3, i.e., something essence. Scientific deductions and pre-
dictions are derived from behavior or structure (extension side) mainly through reason while philosophical deductions
and predictions are derived from essence (duration side) mainly through intuition. Intuition has been a misunder-
standing conception since several authors opposes it to reason1 while what truly opposes to reason is abstraction23.
Intuition is a skill level reached when someone becomes an specialist in something to the point that explicit reasoning
can be dispensed4 since the it may was “internalized”. In this sense, philosophical objectivity may be achieved rec-
ognizing ones first-person experience22 as described by other people11. Considering computing artifacts, the duration
approach may be also used in order to address problems such as of in this paper that can be informally stated as “is
there any real difference among graph and adaptive-graph?” which extension analysis did not provide proper answers.

1.4. Phenomenological Method

Deleuze organized bergsonism into a set of rules3 and then Marcondes11, abducting from Bergson’s and Deleuze’s
texts, organized them into a framework to study programming called Bergsonist Investigation Framework (BIF). This
framework is composed as showed in figure 1a. In addition to these elements, it must be performed a verification of
adequacy over them. A first concern to be verified is the precision of a duration claim. A duration is said to be precise
if it belongs to one and just one object; if a same duration belongs to one or more object, one can say that they are
the same object differing by degree from each other. Afterwards, it must be verified if the individual experience claim

4 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

a) b)

Fig. 1. a) BIF 11 representation in UML Class Diagram. Individual experience aims to specify what experience is intending to capture. Memory is
the artifact resulted from the experience and the convergence point of all cognitive variations. Pure extension is the formal/symbolic meta-model
used when expressing memory. Duration’s extension is the symbolic mental construction that is constructed through the experience; it holds a
model-diagram relation to memory and intends to accomodate reason from extension and intuition from duration. Pure Duration is a qualitative
time that a concern bears in mind; during a duration, the mind is directed to a direction due to a concern and when a new concern interposes, it
changes mind direction. b) Adaptive-graph representation on BIF.

is really an individual experience. It can be checked by verifying if the experience is a skill that can be developed in
Dreyfus4 sense. Then it must be presented the object characterization in terms of cognitive tendencies pure extension,
duration’s extension and pure duration, both individually and as multiplicity or nuances and verify if those tendencies
are really compatible and do not present just an extension difference. Finally, it can be presented how memory is
achieved due to cognition tendencies convergence and how it prolongs through several durations and encompasses
them. This procedure results into a “hypothesis” that may offer some visions, possibilities and applications.

2. Adaptive Graph Hyphothesis

Claim. An adaptive-graph modeling can be considered as a convergence of the adaptive-graph structure, dynamic
topological organization and dynamic incidence structure that results into an adaptive topology (see figure 1b).

Tendencies. Adaptive-graph Structure is e vertice-edge relation in the form G = (V, E,∆,A(ψ)) which can be repre-
sented by any representation convention. This can be considered pure extension since: 1) there is a degree difference
among one representation and another when using a same convention; 2) there is a degree difference among conven-
tions in a way that one can be reduced to another; 3) there is a degree difference when a same convention is used to
represented two different objects such graphs and adaptive-graphs. Applying such formalism there is a direction to
a dynamic topological organization state of mind, i.e. several possibilities and situations of topology variation inter-
poses to mind in order to be modeled. This can be considered duration’s extension since: 1) it directs and is directed
by the adaptive-graph structure; and 2) performs the actualization of the mental construction according to duration
interposition according to each concern to be handled. Each concern that interposes to mind makes it to change its
duration and to focus in one or more A(ψG) variation that can be able to handle it. This results into an update of
mental construction that will reflect into the adaptive-graph structure. It is in this sense that dynamic incidence struc-
ture can be considered pure duration. The mental construction holds in memory and actualizes the topology of the
adaptive-graph (i.e. the adaptive topology). This is memory since it prolongs through durations encompasses nuances
and consolidates all presented tendencies. Those tendencies are proper since they can diverge to be analyzed and also
converge reconstituting the individual experience of adaptive-graph modeling providing a natural bind and cannot be
reduced to each other as would occur a degree difference were present.

Precision. A graph is a mathematical structure whose underlies several applications and technologies. Most of those
graph-based applications and technologies put emphasis the behavior performed over the graph structure, as an exam-
ple, an finite automaton may be described by a graph structure in a way that its primary concern is on state transition
and not on its topological structure. All those similar cases shall not present the same duration as of graph since
they use it as a realization mean. In other hand, some of those applications and technologies emphasis topology as a
primary concern. One example is network topology whose structure can be considered and described as a graph struc-
ture. Theses similar cases present a degree difference from each other performing nuances. According to the example,
a network topology may require more information than a plain graph but “removing” all this, its essential concern
is directed to an incidence structure among machines (or nodes or vertices). Compared to a graph whose essence is

 Francisco S. Marcondes et al. / Procedia Computer Science 130 (2018) 1128–1133 1131
Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000 3

program according to software functionality variance scale18. Due to computer properties a computational graph must
be first constituted, which means that memory address must be allocate to hold graph structure and information; this is
done through an operation like “addEdge()”21. Since there is an “addEdge()” operation, broad interpreted operations
as “removeEdge()” are natural. By such implementation an static structure (level one) becomes an adaptive one
(level four); without an adaptive-graph like formalism there is no theoretical support for such implementation despite
it appears to be widely used. In this sense, since an graph and adaptive-graph implementations may coincide, it
becomes equally difficult to reason about those two proposals differences through computing.

Such difficulties can be expressed considering what Bergson1 called “extension”. Extension is the presence of
a degree difference among existing things, as an example any object may be reduced to another one in geometric
sense. In other hand when considering on object “final-cause” in Aristotle terms it becomes easier to reason among
differences. Bergson goes further and considers the final-cause (or essence) as temporary, i.e., an ever changing
condition within a flux that can be discretized as durations. Duration is perception, the perception of a consciousness
while it endures. This means that may be possible to qualitatively discuss the differences among graph and adaptive-
graph through programmer’s duration when using those tools. In other words it allows a qualitative analysis through
phenomenology14 since it aims to study the structures of consciousness as experienced from the first-person point of
view22. Bergsonism is a possible choice to a phenomenological approach9 once it is desired to address duration.

Summarizing, discussing the differences among graph and adaptive-graph through extension approaches leads to
several dim and fuzzy issues been a problem in itself. In this sense a phenomenological approach, i.e. a qualitative
personal experience description, which addresses duration as bergsonism may be helpful.

1.3. Bergson Philosophical Method

Bergsonism is the name used by Deleuze3 to denote Bergson’s efforts in philosophy. A issue that Bergson aimed
to handle is to bring precision to philosophy and to do so he proposed what he is called as a philosophical method
which intends to be in philosophy as precise as scientific method is to science1. It aims to provide a precise character-
ization of the study object (reaching its essence or defining its meta-model) allowing the derivation of deductions and
predictions. Objectivity is achieved through inter-subjective, in this sense an bergsonist hypothesis by be objectively
validated or rebutted by peers11. Yet it is not a method to be followed in an algorithm fashion, but it is based on some
principles that must be in sight when performing it. In this sense, both scientific and philosophical methods intends to
provide a rigorous and objective refutable/refineable description of the study object through a replicable method in or-
der to derive deductions and predictions. It shall be stated that recently some authors have been considered Bergson’s
philosophical method as a phenomenological approach9 as used in this paper.

The main difference among Bergson philosophy (or in this paper stated as “phenomenology”) and scientific method
is intention. Science mainly concerns with behavior or structure while philosophy (particularly metaphysics) mainly
concerns with primary causes that “forces” something to be3, i.e., something essence. Scientific deductions and pre-
dictions are derived from behavior or structure (extension side) mainly through reason while philosophical deductions
and predictions are derived from essence (duration side) mainly through intuition. Intuition has been a misunder-
standing conception since several authors opposes it to reason1 while what truly opposes to reason is abstraction23.
Intuition is a skill level reached when someone becomes an specialist in something to the point that explicit reasoning
can be dispensed4 since the it may was “internalized”. In this sense, philosophical objectivity may be achieved rec-
ognizing ones first-person experience22 as described by other people11. Considering computing artifacts, the duration
approach may be also used in order to address problems such as of in this paper that can be informally stated as “is
there any real difference among graph and adaptive-graph?” which extension analysis did not provide proper answers.

1.4. Phenomenological Method

Deleuze organized bergsonism into a set of rules3 and then Marcondes11, abducting from Bergson’s and Deleuze’s
texts, organized them into a framework to study programming called Bergsonist Investigation Framework (BIF). This
framework is composed as showed in figure 1a. In addition to these elements, it must be performed a verification of
adequacy over them. A first concern to be verified is the precision of a duration claim. A duration is said to be precise
if it belongs to one and just one object; if a same duration belongs to one or more object, one can say that they are
the same object differing by degree from each other. Afterwards, it must be verified if the individual experience claim

4 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

a) b)

Fig. 1. a) BIF 11 representation in UML Class Diagram. Individual experience aims to specify what experience is intending to capture. Memory is
the artifact resulted from the experience and the convergence point of all cognitive variations. Pure extension is the formal/symbolic meta-model
used when expressing memory. Duration’s extension is the symbolic mental construction that is constructed through the experience; it holds a
model-diagram relation to memory and intends to accomodate reason from extension and intuition from duration. Pure Duration is a qualitative
time that a concern bears in mind; during a duration, the mind is directed to a direction due to a concern and when a new concern interposes, it
changes mind direction. b) Adaptive-graph representation on BIF.

is really an individual experience. It can be checked by verifying if the experience is a skill that can be developed in
Dreyfus4 sense. Then it must be presented the object characterization in terms of cognitive tendencies pure extension,
duration’s extension and pure duration, both individually and as multiplicity or nuances and verify if those tendencies
are really compatible and do not present just an extension difference. Finally, it can be presented how memory is
achieved due to cognition tendencies convergence and how it prolongs through several durations and encompasses
them. This procedure results into a “hypothesis” that may offer some visions, possibilities and applications.

2. Adaptive Graph Hyphothesis

Claim. An adaptive-graph modeling can be considered as a convergence of the adaptive-graph structure, dynamic
topological organization and dynamic incidence structure that results into an adaptive topology (see figure 1b).

Tendencies. Adaptive-graph Structure is e vertice-edge relation in the form G = (V, E,∆,A(ψ)) which can be repre-
sented by any representation convention. This can be considered pure extension since: 1) there is a degree difference
among one representation and another when using a same convention; 2) there is a degree difference among conven-
tions in a way that one can be reduced to another; 3) there is a degree difference when a same convention is used to
represented two different objects such graphs and adaptive-graphs. Applying such formalism there is a direction to
a dynamic topological organization state of mind, i.e. several possibilities and situations of topology variation inter-
poses to mind in order to be modeled. This can be considered duration’s extension since: 1) it directs and is directed
by the adaptive-graph structure; and 2) performs the actualization of the mental construction according to duration
interposition according to each concern to be handled. Each concern that interposes to mind makes it to change its
duration and to focus in one or more A(ψG) variation that can be able to handle it. This results into an update of
mental construction that will reflect into the adaptive-graph structure. It is in this sense that dynamic incidence struc-
ture can be considered pure duration. The mental construction holds in memory and actualizes the topology of the
adaptive-graph (i.e. the adaptive topology). This is memory since it prolongs through durations encompasses nuances
and consolidates all presented tendencies. Those tendencies are proper since they can diverge to be analyzed and also
converge reconstituting the individual experience of adaptive-graph modeling providing a natural bind and cannot be
reduced to each other as would occur a degree difference were present.

Precision. A graph is a mathematical structure whose underlies several applications and technologies. Most of those
graph-based applications and technologies put emphasis the behavior performed over the graph structure, as an exam-
ple, an finite automaton may be described by a graph structure in a way that its primary concern is on state transition
and not on its topological structure. All those similar cases shall not present the same duration as of graph since
they use it as a realization mean. In other hand, some of those applications and technologies emphasis topology as a
primary concern. One example is network topology whose structure can be considered and described as a graph struc-
ture. Theses similar cases present a degree difference from each other performing nuances. According to the example,
a network topology may require more information than a plain graph but “removing” all this, its essential concern
is directed to an incidence structure among machines (or nodes or vertices). Compared to a graph whose essence is

1132 Francisco S. Marcondes et al. / Procedia Computer Science 130 (2018) 1128–1133Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000 5

Fig. 2. Consider a UML Statechart organized through GoF’s State Pattern 6 with two states, ConcreteStateA and ConcreteStateB, and a transition
from the first to the second one. Using UML object diagram it is just possible to express two detached diagrams each to a particular object’s
configuration like in this example depicted as “DOB - State A” and “DOB - State B”. When applying the adaptive-graph approach, it becomes
possible to model how can be the structural transition from configuration “DOB - State A” to “DOB - State B” (depicted in the “note”).

GRAPH ADAPTIVE GRAPH
Queue Multipriority queue
Tree Prunable Tree

Multi-linked Separation of Concerns

GRAPH ADAPTIVE GRAPH
Neural Network Multipattern Neural Network

Data Base Multischema Data Base
Computer Network Variable Topology Network

Table 2. Some possibilities considering well-known graph-based artifacts through adaptive-graph.

static incidence structure since during its modeling it does not arouse to mind interposing topologies; adaptive-graph
essence is dynamic incidence structure since several topological variations possibilities interpose.

3. Results and Discussion

There are several adaptive-graph application possibilities already in use. An explicit use of adaptive-graph was
to underlies an adaptive Virtual Network Embedding proposal to logically remove undesirable nodes of substrate
network due to service specification12 in order to reduce the processing time when computing virtual routes (a NP-
hard problem)12. Actually any structure which presents topological variation is liked to be considered an adaptive-
graph implementation since in strict theoretical terms, a graph topology is not allowed to change-over. In other words,
adaptive-graph provides a theoretical foundation to structures whose topology changes over time. As an example,
through the adaptive-graph conception it is possible to describe the transition among views of an UML Object Diagram
as presented in figure 2. In this sense, it can be said that adaptive-graph formalism is applied at least in two situations:
1) solve problems whose data can be benefited by a dynamic topological organization; and 2) support structures that
can be described as adaptive-graph based or like structures.

Taking up the initial question of this paper (“what changes when using the adaptive-graph?”), approaching some
known graph-based artifacts considered through adaptive-graph yields to a reinterpretation or to a different perspec-
tive. Considering as example a Neural Network, the possibility to insert and remove neurons during run-time provide
to the network the ability of restructures itself becoming a possibly Multipattern Neural Network. Considering a Tree
structure through adaptive-graph conception it may provide the ability of pruning itself, this is useful considering
some tree-based heuristics. Some of those possibilities are depicted in table 2.

Except for Variable Topology Network that was already performed12 all those other are “mental experiments”
based most on intuition based on those artifacts and presented adaptive-graph. An attempt that worth to be performed
is apply adaptive-graph in a situation that there are no dynamic topological changes need. Doing so it is possible to
notice that mind naturally conceives an adaptive-graph whose vertices and edges do not need to change, i.e., a non-
adaptive-graph. This means the several diagrammatic expressions that use the graph concept as underlying theory
as UML diagrams24, network structures12, automata16, digraph12, etc. when considered through adaptive-graph
conception may become an adaptive artifact.

Summarizing, through bergsonism it is possible to realize key differences among graph and adaptive-graph in a way
that becomes possible to say the adaptive-graph conception is essentially different from a non-adaptive graph since it
yields to diverse mind direction in problems that involve topological structures. Also, adaptive-graph suits to the class
of structural problems with dynamic incidence structure (pure duration) that can be solved by a dynamic topological

6 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

organization effort (duration’s extension) that can be reduced to an adaptive-graph structure (pure extension). The
main difference among graph and adaptive-graph is the mind focus during modeling which is quite subtle but with
evident implications: on graph mind focuses on relations and on adaptive-graph on changing relations.

Since such phenomenological claim was state it can be validated, reviewed, refined or rebutted by further phe-
nomenological studies over this same subject. A validation or rebuttal procedure may be apply the adaptive-graph in
many situations and realize if it does or does not direct mind in a similar fashion that was presented in this paper. The
proposed phenomenological method itself, since it was defined, may also be object of further critic and development.

4. Conclusion

This paper started with an informal research question stated as “what changes when using the adaptive-graph?”.
The justification to such question is the known difficulty to proper understand differences among methods and method
variations. The motivation is to discuss if adaptivity leads to a distinct (as does λ-calculus) or compose an existing (as
does Post Machines) programing paradigm. Since this is an wide enterprise and there is no wide recognized approach
procedure to be performed, this paper stepped-back and focuses the research method applied as proof of concept in
order to verify its feasibility.

The proposed method, based on Bergson’s phenomenology, intends to divert symbolic difficulties in the extension
side and focuses on personal experience in the duration side. In other words, instead of discussing structural or
behavioral difference among things the proposal is to perform a qualitative discussion during their experience of use.
In order to reduce complexity, to perform the proof of concept it was chosen a particular case of adaptivity called
adaptive-graph. The proposed method was applied over the adaptive graph showing up feasible. This means this same
method may be applied to other programming artifacts resulting into a programming phenomenology.

This study shows that adaptive and non-adaptive graphs direct mind in different ways suggesting they are essentially
distinct artifacts. As a supposition this can be generalized to adaptivity in general, which been true may result into a
distinct programming paradigm. In this sense, this method must to be enlarged to enfold adaptivity as a whole.

Acknowledgements

This paper has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT Fundação para a Ciência e Tecnologia - Project UID/CEC/ 00319/2013.

References

1. Bergson, H. (2013). La pensée et le mouvant. Presses Électroniques de France.
2. Bondy, J. A. Murty U. S. R. (1982). Graph Theory with Applications. North-Holland.
3. Deleuze, G. (1988). Bergsonism. Zone Books.
4. Dreyfus, H. L. (2002). A Phenomenology of Skill Acquisition as the basis for a Merleau-Pontian non-representationalist Cognitive Science. n/a.
5. Frauenberger, C. Good, J. Bright, J. K.(2010). Phenomenology, a framework for participatory design. PDC ’10 Proceedings. Sydney, Australia.
6. Gamma, E. Helm, R. Johnson, R. Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented Software. Pearson Education.
7. Hiroyuki, M. (2003). From reflection to interaction. CRPIT ’03 Computers and Philosophy, v. 37 . Australian Computer Society.
8. Jacobson, I. Meyer, B Soley, R. (2009). The SEMAT Initiative: A Call for Action. Dr.Dobb’s: http://goo.gl/wkiX2K
9. Kelly, M. (2010). Bergson and Phenomenology. Springer.
10. Mantis, H. M. Laaksolahti, J. Hk, K. (2014). My Self and You. ACM Transactions on Computer-Human Interaction, v. 21 i. 4.
11. Marcondes, F. S. (2015). Abordagem bergsonista para o estudo da programação. Ad: Vega, I. S. Catholic University of São Paulo, Master T.
12. Marcondes, F. S. Molina, M. A. T. (2017). Uma proposta de Topologia Adaptativa. Memórias do WTA 2017. EPUSP, São Paulo.
13. Marcos, L. Flores, F. Martnez, J. J. (2010). Lecturing about the phenomenology of databases. ITiCSE ’10 Proceedings. Ankara, Turkey.
14. Nakayama, Y. (1994). ”Phenomenology” and qualitative research methods. Sei Roka Kango Daigaku kiyÅ. 20:22-34.
15. Neto, J. J. (2002). Adaptive Rule-Driven Devices - General Formulation and Case Study. Lecture Notes in Computer Science, v. 2494. Springer.
16. Neto, J. J. (2003). Autômatos em engenharia de Computação. I Sem. de la Sociedad Chotana de Ciencias y la Red Mundial de Cient. Peruanos.
17. Neto, J. J. (2007). Um Levantamento da Evolução da Adaptatividade e da Tecnologia Adaptativa. Revista IEEE América Latina, v. 5, n. 7.
18. Neto, J. J. (2009). Adaptatividade: Generalização Conceitual. 3o Workshop de Tecnologia Adaptativa. São Paulo, EPUSP.
19. Neto, J. J. (2009). Um Glossário sobre Adaptatividade. 3o Workshop de Tecnologia Adaptativa. São Paulo, EPUSP.
20. Ramos, M. V. Neto, J. J. Vega, I. S. (2009). Linguagens Formais: Teoria, Modelagem e Implementacao. Bookman.
21. Sedgewick, R. Wayne, K. (2011). Algorithms. Addison-Wesley Professional, 4th edition.
22. Smith, D. W. (2016). Phenomenology. In: The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.).
23. Teixeira, L. (2001). A Doutrina dos Modos de Percepção e o Conceito de Abstração. UNESP.
24. Vega, Í. Camargo, C. E. P. e Marcondes, F. S. (2015). Elaboração de especificações adaptativas. Memórias do IX WTA. EPUSP, São Paulo

 Francisco S. Marcondes et al. / Procedia Computer Science 130 (2018) 1128–1133 1133Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000 5

Fig. 2. Consider a UML Statechart organized through GoF’s State Pattern 6 with two states, ConcreteStateA and ConcreteStateB, and a transition
from the first to the second one. Using UML object diagram it is just possible to express two detached diagrams each to a particular object’s
configuration like in this example depicted as “DOB - State A” and “DOB - State B”. When applying the adaptive-graph approach, it becomes
possible to model how can be the structural transition from configuration “DOB - State A” to “DOB - State B” (depicted in the “note”).

GRAPH ADAPTIVE GRAPH
Queue Multipriority queue
Tree Prunable Tree

Multi-linked Separation of Concerns

GRAPH ADAPTIVE GRAPH
Neural Network Multipattern Neural Network

Data Base Multischema Data Base
Computer Network Variable Topology Network

Table 2. Some possibilities considering well-known graph-based artifacts through adaptive-graph.

static incidence structure since during its modeling it does not arouse to mind interposing topologies; adaptive-graph
essence is dynamic incidence structure since several topological variations possibilities interpose.

3. Results and Discussion

There are several adaptive-graph application possibilities already in use. An explicit use of adaptive-graph was
to underlies an adaptive Virtual Network Embedding proposal to logically remove undesirable nodes of substrate
network due to service specification12 in order to reduce the processing time when computing virtual routes (a NP-
hard problem)12. Actually any structure which presents topological variation is liked to be considered an adaptive-
graph implementation since in strict theoretical terms, a graph topology is not allowed to change-over. In other words,
adaptive-graph provides a theoretical foundation to structures whose topology changes over time. As an example,
through the adaptive-graph conception it is possible to describe the transition among views of an UML Object Diagram
as presented in figure 2. In this sense, it can be said that adaptive-graph formalism is applied at least in two situations:
1) solve problems whose data can be benefited by a dynamic topological organization; and 2) support structures that
can be described as adaptive-graph based or like structures.

Taking up the initial question of this paper (“what changes when using the adaptive-graph?”), approaching some
known graph-based artifacts considered through adaptive-graph yields to a reinterpretation or to a different perspec-
tive. Considering as example a Neural Network, the possibility to insert and remove neurons during run-time provide
to the network the ability of restructures itself becoming a possibly Multipattern Neural Network. Considering a Tree
structure through adaptive-graph conception it may provide the ability of pruning itself, this is useful considering
some tree-based heuristics. Some of those possibilities are depicted in table 2.

Except for Variable Topology Network that was already performed12 all those other are “mental experiments”
based most on intuition based on those artifacts and presented adaptive-graph. An attempt that worth to be performed
is apply adaptive-graph in a situation that there are no dynamic topological changes need. Doing so it is possible to
notice that mind naturally conceives an adaptive-graph whose vertices and edges do not need to change, i.e., a non-
adaptive-graph. This means the several diagrammatic expressions that use the graph concept as underlying theory
as UML diagrams24, network structures12, automata16, digraph12, etc. when considered through adaptive-graph
conception may become an adaptive artifact.

Summarizing, through bergsonism it is possible to realize key differences among graph and adaptive-graph in a way
that becomes possible to say the adaptive-graph conception is essentially different from a non-adaptive graph since it
yields to diverse mind direction in problems that involve topological structures. Also, adaptive-graph suits to the class
of structural problems with dynamic incidence structure (pure duration) that can be solved by a dynamic topological

6 Marcondes, et al. / Procedia Computer Science 00 (2016) 000–000

organization effort (duration’s extension) that can be reduced to an adaptive-graph structure (pure extension). The
main difference among graph and adaptive-graph is the mind focus during modeling which is quite subtle but with
evident implications: on graph mind focuses on relations and on adaptive-graph on changing relations.

Since such phenomenological claim was state it can be validated, reviewed, refined or rebutted by further phe-
nomenological studies over this same subject. A validation or rebuttal procedure may be apply the adaptive-graph in
many situations and realize if it does or does not direct mind in a similar fashion that was presented in this paper. The
proposed phenomenological method itself, since it was defined, may also be object of further critic and development.

4. Conclusion

This paper started with an informal research question stated as “what changes when using the adaptive-graph?”.
The justification to such question is the known difficulty to proper understand differences among methods and method
variations. The motivation is to discuss if adaptivity leads to a distinct (as does λ-calculus) or compose an existing (as
does Post Machines) programing paradigm. Since this is an wide enterprise and there is no wide recognized approach
procedure to be performed, this paper stepped-back and focuses the research method applied as proof of concept in
order to verify its feasibility.

The proposed method, based on Bergson’s phenomenology, intends to divert symbolic difficulties in the extension
side and focuses on personal experience in the duration side. In other words, instead of discussing structural or
behavioral difference among things the proposal is to perform a qualitative discussion during their experience of use.
In order to reduce complexity, to perform the proof of concept it was chosen a particular case of adaptivity called
adaptive-graph. The proposed method was applied over the adaptive graph showing up feasible. This means this same
method may be applied to other programming artifacts resulting into a programming phenomenology.

This study shows that adaptive and non-adaptive graphs direct mind in different ways suggesting they are essentially
distinct artifacts. As a supposition this can be generalized to adaptivity in general, which been true may result into a
distinct programming paradigm. In this sense, this method must to be enlarged to enfold adaptivity as a whole.

Acknowledgements

This paper has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT Fundação para a Ciência e Tecnologia - Project UID/CEC/ 00319/2013.

References

1. Bergson, H. (2013). La pensée et le mouvant. Presses Électroniques de France.
2. Bondy, J. A. Murty U. S. R. (1982). Graph Theory with Applications. North-Holland.
3. Deleuze, G. (1988). Bergsonism. Zone Books.
4. Dreyfus, H. L. (2002). A Phenomenology of Skill Acquisition as the basis for a Merleau-Pontian non-representationalist Cognitive Science. n/a.
5. Frauenberger, C. Good, J. Bright, J. K.(2010). Phenomenology, a framework for participatory design. PDC ’10 Proceedings. Sydney, Australia.
6. Gamma, E. Helm, R. Johnson, R. Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented Software. Pearson Education.
7. Hiroyuki, M. (2003). From reflection to interaction. CRPIT ’03 Computers and Philosophy, v. 37 . Australian Computer Society.
8. Jacobson, I. Meyer, B Soley, R. (2009). The SEMAT Initiative: A Call for Action. Dr.Dobb’s: http://goo.gl/wkiX2K
9. Kelly, M. (2010). Bergson and Phenomenology. Springer.
10. Mantis, H. M. Laaksolahti, J. Hk, K. (2014). My Self and You. ACM Transactions on Computer-Human Interaction, v. 21 i. 4.
11. Marcondes, F. S. (2015). Abordagem bergsonista para o estudo da programação. Ad: Vega, I. S. Catholic University of São Paulo, Master T.
12. Marcondes, F. S. Molina, M. A. T. (2017). Uma proposta de Topologia Adaptativa. Memórias do WTA 2017. EPUSP, São Paulo.
13. Marcos, L. Flores, F. Martnez, J. J. (2010). Lecturing about the phenomenology of databases. ITiCSE ’10 Proceedings. Ankara, Turkey.
14. Nakayama, Y. (1994). ”Phenomenology” and qualitative research methods. Sei Roka Kango Daigaku kiyÅ. 20:22-34.
15. Neto, J. J. (2002). Adaptive Rule-Driven Devices - General Formulation and Case Study. Lecture Notes in Computer Science, v. 2494. Springer.
16. Neto, J. J. (2003). Autômatos em engenharia de Computação. I Sem. de la Sociedad Chotana de Ciencias y la Red Mundial de Cient. Peruanos.
17. Neto, J. J. (2007). Um Levantamento da Evolução da Adaptatividade e da Tecnologia Adaptativa. Revista IEEE América Latina, v. 5, n. 7.
18. Neto, J. J. (2009). Adaptatividade: Generalização Conceitual. 3o Workshop de Tecnologia Adaptativa. São Paulo, EPUSP.
19. Neto, J. J. (2009). Um Glossário sobre Adaptatividade. 3o Workshop de Tecnologia Adaptativa. São Paulo, EPUSP.
20. Ramos, M. V. Neto, J. J. Vega, I. S. (2009). Linguagens Formais: Teoria, Modelagem e Implementacao. Bookman.
21. Sedgewick, R. Wayne, K. (2011). Algorithms. Addison-Wesley Professional, 4th edition.
22. Smith, D. W. (2016). Phenomenology. In: The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.).
23. Teixeira, L. (2001). A Doutrina dos Modos de Percepção e o Conceito de Abstração. UNESP.
24. Vega, Í. Camargo, C. E. P. e Marcondes, F. S. (2015). Elaboração de especificações adaptativas. Memórias do IX WTA. EPUSP, São Paulo

