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Abstract

This paper describes an empirical research focused on inlining, a compiler transformation that explores the idea of expanding a
function’s code to uncover optimization opportunities. Previous work has not addressed the problem of representing and utiliz-
ing multi-run profiles. To produce sound results on feedback-directed optimization (FDO), we employ multi-run profiles using
Berube’scontribution on Combined Profiling (CP). The FDO inliner (FDI) designed by Berube is already an adaptive one. We
devised a new algorithm for inlining, a slight modification on Berube’sproduced a speedup over other inliners, including LLVM.
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1. Introduction

This paper describes an empirical research focused on inlining, a compiler transformation. Inlining explores the
idea of expanding a function’s code to uncover optimization opportunities. Previous work has not addressed the
problem of representing and utilizing multi-run profiles 2. A feedback-directed optimization (FDO) compiler should
not merely add or average profiles from multiple runs because such a profile does not provide any information about
the variations in program behaviors observed between different inputs.

The deficiencies of this evaluation process are particularly prevalent, and especially disconcerting, when FDO
is used to guide a transformation. In this scenario, instrumentation is inserted into the program during an initial
compilation to collect a profile of the run-time behavior of the program during one or more training runs. The
profile is used in a second compilation of the program to help the compiler assess the benefit of code transformation
opportunities.

Kalibera® states that execution time is a key measurement, for example, 90 out of 122 papers presented in 2011
at PLDI, ASPLOS, and ISMM, or published in TOPLAS and TACO employs it. As reported by Kalibera and Jones,
the overwhelming majority of these papers has shown results either impossible to repeat or didn’t demonstrate their
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performance claims; there was no measure of variation for their results3. Berube*> employed Combined Profiling
(CP) to apply multiple profiles to FDO and also to evaluate the performance of a program from various inputs.
Experimental results demonstrate that significant behavior variation is present in the program workloads and that this
variation is successfully captured and represented by the CP methodology. This research also focuses on execution
time but applying CP.

In this research, CP is applied to inlining as a case study, because it allows many other optimization techniques to
be performed afterward. This paper employs a case study of the CP process for inlining, and defining a new inlining
strategy over Berube’s” algorithm, which is already an adaptive one. Our defined algorithm for inlining and the results
are shown.

The main contribution of this paper are:

o An algorithm for inlining that produces a speedup;
e An experiment comparing the devised algorithm with regular algorithms for inlining;
e The use of CP-runs in a controlled trial comparing to single-runs.

This paper has six sections, the introduction, where the research problem is posed. The inlining transformation is
described in the next section, and then the CP methodology is described. Following starts the section describing the
adaptive FDI and the experiments. This paper ends with a discussion on related works and the conclusion.

2. Function Inlining

Function inlining, or simply inlining, is a classic code transformation that can significantly increase the perfor-
mance of many programs. A compiler pass that decides which calls to inline, and in which order, is referred to as
an inliner. The basic idea of inlining is straightforward: rather than making a function call, replace the call in the
originating function with a copy of the body of the function to be called. Berube describes the existing inliner in
LLVMand then presents a new feedback-directed inliner (FDI) that uses CP*. The FDI inlining strategies proposed
by Berube and the LLVM inliner are used in this paper to illustrate the need for care when attempting to predict the
performance of a FDO transformation with a benchmark-based performance study. All inliners discussed in this paper
are implemented in the open-source LLVM compiler®.

Some terminology is required to discuss the inlining process. The function making a call is referred to as the caller,
while the called function is the callee. The representation of a call in a compiler’s internal representation (IR) is a
call site. In LLVM, a call site is an instruction that indicates both the caller and the callee. Inlining inserts a copy of the
callee at a call site.

2.1. Feedback-Directed Inlining (FDI)

A commonly held belief amongst compiler designers is that inlining decisions should be sensitive to the frequency
of execution of control-flow paths in a program. The premise is that with limited budget a compiler should select the
most beneficial call sites to inline and that the most profitable call sites will be the ones that execute most frequently.
The limited budget arises from a desire to limit code growth to prevent the scope of non-linear-time static analysis
from reaching sizes that would make such analyses impractical. The most common technique still used in compiler
research and practice is to estimate the execution frequency of alternate control-flow paths from a single profiling run
using a single input for a given program. Combined Profiling (CP) is a methodology that allows this prediction to use
information collected from multiple executions of a program?. Berube developed a new CP-driven Feedback-Directed
Inliner that is a worklist algorithm whose decisions are based on tuneable cost/benefit functions*. This inliner is shown
in Algorithm 1.

3. Combined Profiling Methodology

Working at the UofA CDOL group, under Nelson Amaral supervision, Berube developed the Combined Profiling
(CP) statistical modeling technique that produces a Combined Profile (CProf) from a collection of traditional single-
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Algorithm 1 FDI worklist

1: Input: Module M: Whole-program IR 22: continue

2: Input: File cpFile: Combined profile 23: end if

3: Data: List<call site> candidates, ignored 24: Inlining succeeded

4: Data: Map<Function — List<call site> > callers 25: budget -= inlineResults.codegrowth

initialize(M, cpFile) budget = computeCodeGrowthBudget() 26: callers[source.getCallee].delete(source)
candidates.sort() 27: for caller € callers[source.caller] do

5: while budget > 0 AND NOT candidates.empty do 28: caller.calcScore()

6: source = candidates.randPop() /* candidates.popBest() */ 29: end for

7 if source.score < 0 then 30: for i =1 to inlineResults.numlInlinedCalls do

8 break 31: target = inlineResults.inlinedCall[i]

9: end if 32: original = inlineResults.originalCall[i]
10: if source.callee.cannotInline then 33: callers[target.getCallee].insert(target)
11: ignored.add(source) 34 if ignored.contains(original) > O then
12: continue 35: target.histogram = 0
13: end if 36: ignored.add(target)

14: if source.expectedCodeGrowth > budget then 37: else

15: ignored.add(source) continue 38: target.histogram = source.histogram X
16: end if 39: original.histogram

17: Try to inline the candidate... 40: target.calcScore()

18: inlineResult = LLVM.inlinelfPossible(source) 41: candidates.insert(target)

19: if inlineResult.failed then 42: end if

20: source.callee.setCannotlnline() 43: end for

21: ignored.add(source) 44: end while

run profiles, thus facilitating the collection and representation of profile information over multiple runs*. The use of
many profiling runs, in turn, eases the burden of training-workload selection and mitigates the potential for perfor-
mance degradation. There is no need to select a single input for training because data from any number of training
runs can be merged into a combined profile. More importantly, CP preserves variations in execution behavior across
inputs. The distribution of behaviors can be queried and analyzed by the compiler when making code-transformation
decisions. Modestly profitable transformations can be performed with confidence when they are beneficial to the
entire workload. On the other hand, transformations expected to be highly beneficial on average can be suppressed
when performance degradation would be incurred on some members of the workload.
Combining profiles is a three-step process?:

1. Collect raw profiles via traditional profiling.
2. Apply Hierarchical Normalization (HN) to each raw profile.
3. Apply CP to the normalized profiles to create the combined profile.

CP provides a data representation for profile information but does not specify the semantics of the information stored
in the combined profile®. Naive combination of raw profiles, such as simple sums or arithmetic averages, can be very
misleading.

4. Adaptive Inliner

FDI is a FDO inliner that can be parameterized, and it also employs the CP methodology. We designed some
experiments to show that FDI can achieve better results than well established static inliners. FDI inliner is fully
described in Berube’s Ph.D. dissertation*. The input set was defined as a minimal coverage set, and the training set
was defined as the whole input set except for the input under test. The experiment compares the runtime performance
of the programs when inlined by LLVM static inliner with the performance of the same program when inlined by FDI
inliner. The FDI algorithm is shown in Algorithm 14.

Algorithm 1 presents an outline of the worklist algorithm used by FDI. The algorithm uses several data structures:
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candidates The worklist is a sorted list of candidates. A call site is an inlining candidate if it is a direct call, and if
the callee does not contain a set jump nor has any previous attempt to inline the callee failed. Furthermore, the
call site must have executed at least once during profiling.

ignored A list of call sites that are not inlining candidates. This list is maintained to enable correct and efficient
bookkeeping and to allow any copies of these call sites created by inlining their caller to be immediately ignored.

callers A mapping from functions to the call sites that call them. This map allows for the re-scoring of call sites
if a call is inlined into their callee. That inlining will change the callee’s size and may break the expected
simplifications possible if the callee is inlined.

inlineResult A structure returned by inliner that provides summary information regarding the transformation. In
particular, it indicates if the attempted inlining failed. FDI enhances the default LLVM structure with co-indexed
lists identifying the new call sites created in the caller by inlining, and their originating call sites in the callee.
This information is required so that profile information can be estimated for the new call sites.

FDI is an Adaptive Inliner that modifies (by inlining) the programs according to the acquired profiles, which
may change from one acquisition to another. And we improved the algorithm considering the noisy environment
because measuring the running time also captures all the events happening on the system. Our approach tries to make
a smooth change at each step by applying a limited random choice of the inlining candidates (compare Figures 1a with
1b, the variance is reduced in the latter). This way the sorted list of inlining candidates is not used orderly anymore,
but candidates are randomly chosen according to the current budget value. Line 6 of Algorithm 1 was changed from
candidates.popBest() to candidates.randPop() reflecting the random choice. We call this setup as Random-Choice,
and the other as Original.

We took some experimental decisions to make a fair comparison on the inliners and have a reasonable and short
input set. Firstly, both inliners were also evaluated concerning the baseline Never, which means 'never inline’.
Second, the input set for each program was defined to be representative for the entire set of inputs, and are described
as follows. The input set for the program bzipR is a small subset of the original 15-input set described in Section 4.1.
The results show an improvement over LLVM.

4.1. Input Workload Description

Rather than using the SPEC benchmark versions of the bzipRprogram, the fully-functional “real” version is used.
Using the real versions of the compressor program eliminates the unrealistically-simplified profiling situation where
mutually-exclusive use cases are combined into a single program run. Consequently, the program cannot do decom-
pression and compression, or multiple levels of compression, within the same run. Different inputs must cover these
distinct use-cases in the program workload. This workload is split in half into a compression set and a decompression
set. Several inputs in the compression set have an analogue in the decompression set. However, the file format is
usually different, and the source of the data is never the same. For instance, revelation-ogg in the compression set
and sherlock-mp3 in the decompression set are both audiobooks, but the audio is recorded in different formats, and
the books themselves are different.

The compressor uses a numeric command-line flag to control the tradeoff between compression speed and com-
pression quality. The flags take integer values between 1 (fastest, least compressed) and 9 (slowest, most compressed).
The seven inputs in the compression set each use a different compression level, from 3 to 9. Most inputs are collec-
tions of files. Each collection is archived (uncompressed) so that the input and output of each run is a single file. In
order to minimize the impact of disk access, the output of each run is redirected to /dev/null.

The decompression set for the compressor uses the same base set of files, pre-compressed by the appropriate
compressor at the default compression level.

4.2. Results

The experiments were conducted on a Dell Optiplex 755 running Ubuntu Linux 16.04 equipped with Intel Duo
Core E6750 2.66 GHz processors, 4 GB RAM, DVD-RW drive, Intel Pro/1000 Gb ethernet, Gigabyte GeForce 8600
video cards, and 1 TB SATA II drive. This case study uses the SPEC CPU 2006 gcc evaluated with fifteen inputs.
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Speedup

auriel
avernum
cards
ebooks
gee

lib-a
mohicans
ocal
paintings
potemkin
proteins-1
proteins-2
revelation
sherlock
usrlib

0.9886
0.9862
1.0018
0.9873
1.0056
0.9886
0.9807
0.9992
0.9875
0.9890
0.9990
1.0024
0.9823
0.9873
0.9964

1.0168
1.0037
0.9970
1.0194
1.0419
0.9979
1.0031
1.0029
1.0011
1.0105
0.8956
1.0860
1.0028
1.0304
0.9502

2.77%
1.75%
-0.48%
3.16%
3.48%
0.93%
2.22%
0.37%
1.36%
2.12%
-11.54%
7.70%
2.05%
4.18%
-4.86%

Geomean

2.26%

Table 1: Running times normalized and FDI geomean speedup over LLVM for bzipR.

Table 1 shows that FDI outperformed LLVM for bzipR in this configuration. The data are normalized by baseline
Never and the geometric mean of the FDI speedup over LLVM was 2.26% for bzipR with this set of inputs. Figures la
and 1b show the running time of the programs applying the Original FDI algorithm and the running time of the
Random-Choice FDI algorithm normalized by Never.
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(a) bzipR inlined by the Original setup (b) bzipR inlined by the Random-Choice setup

Figure 1: Running times of the inlined versions normalized by Never

The evaluation of inlining used fourteen different reward functions for the combined-profiling inlining (see Fig-
ure 1). The normalized execution time for each of those reward functions uses a 3-fold cross-validation. For instance,
to obtain the single measurement in the figure, for each input u in the workload W, u is used for training and the
generated program is tested using a leave-one-in methodology, i.e. the execution times for all inputs in ‘W except
u is obtained, and the speedup for each of these times in relation to the baseline is computed. Then the geometric
average of these speedups is computed. Hence, p,(‘W)* is the geometric mean of normalized execution times for ‘W,
measured by 3-fold cross-validation:

Where 7,(i) is the execution time of a FDO version of a program on input i when u is used as the training workload,
and 7¢(7) is the execution time for the baseline Never running on input i. Both 7,(i) and #y(i) are measured as the

average of three runs. 7,(i) = %

5. Related Work

There are several researchers concerned with the problem of reliability in performance measures. Kalibera et al.?
propose a rigorous methodology for measuring time and claim that the measurements are still done in reasonable time.
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Their methodology considers that the environment, consisting of hardware and software, versions of the operating
system, versions of the compiler used to measure data, they all change scarcely. For this reason, their methodology
asserts that before starting to take any measurement the whole environment has to be deeply investigated to find how
many repeated iterations are required to achieve an independent state (the execution times of benchmark iterations
are statistically independent). They provide means to calculate the number of runs needed to achieve independent
states for a benchmark analysis, also for measuring speedups. They used different benchmarks in their experiments
and showed that there are a different number of repetition counts for them. The methodology we employed does not
assume that the environment changes scarcely, and we don’t need a considerable number of repetitions.

Mytkowicz et al.” ran some experiments using SPEC CPU benchmarks and found significant systematic measure-
ment errors in some sources, which could produce biased results. Their suggestion is to randomise the experimental
setup to eliminate the bias. The idea of ramdomising is fully incorporated in Stabiliser®. Stabiliser is an LLVM-based
compiler and runtime environment for randomisation of code, stack and heap layout. The purpose of randomisation
is to reduce the need for repeated execution. Randomising the whole program, in fact, introduces more variation than
in real systems; also some compiler transformations can become useless. Our approach is much less intrusive than
theirs and we don’t break compiler transformations. Georges et al.® shows that different methodologies can lead to
different conclusions. They work with Java benchmarks and recommends running multiple iterations of each Java
benchmark within a single VM execution, and also multiple VM executions. Our work is not focused on Java, but
their recommendation remains true, it is necessary to use a reliable experimental methodology.

6. Conclusion

This paper has proposed a new algorithm for inlining over Berube’s® contribution. The Random-Choice algorithm
produces a speedup over other inliners, including LLVM. Our setup applied CP methodology to achieve more statisti-
cally sound results. Also, the new Random-Choice algorithm for inlining produces a better result and outperforms
LLVM as shown in Figure 1.
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