Compiler construction —a pedagogical approach

Jodo Jost Neto, César Bravo Pariente, Fabrizio Leonardi
Escola Politécnica da Universidade de Sao Paulo, Brazil.
Departamento de Engenharia de Computacdo e Sstemas Digitais
Av. Prof. Luciano Gudberto, travessa 3, nimero 158
05508-900 - S0 Paulo - SP - Brazil
E-mails. jjneto@pcs.usp.br , lupus@usp.br , fabrizio@cci.fe.br

Abstract

The am of the present paper is to revidt some important topics regarding
pedagogica issues on the teaching of concepts and techniques of programming
languages and compiler condruction. Essentialy, a unified forma modd is used
in the proposed approach to explore the expodtion of the students to a set of
lessons with growing complexity, with a heavy practicd component, dl sharing
the same common forma modd. Experiments start with the definition of regular
languages, amed to introduce concepts and give the Sudents familiarity with
forma languages and their description through a metdanguage suitable for direct
mapping into finite-state automata. Context-free languages are then consdered as
a ample extenson of regular languages, both in grammar and acceptor aspects.
The proposed formulation alow conddering context-dependent languages as
naturd extendgons of context-free ones, by adding some arangements, while
covering issues related to scopes, types, dynamic syntax, dtatic semantics and

language extensibility.

Keywords: Compiler condruction, Context-free languages, Structured
pushdown automata, Adaptive automata

1.Introduction

For many years we have been teaching computer languages and their compilers for
Electricd and Computing Engineering students, and many experiences have been made while
searching for some pedagogicd approach that turns essier the task of transferring to the
dudents informetion, technicd issues and, expecidly, scientific foundations for the
techniques.

At the time they have attended our classes, those students have aready been exposed to
related topics in other disciplines, and they have expressed preference in technical but non
heavily-theoreticd disciplines, making the task of teaching pure computer-science disciplines
avery hard task.

Because of their unquestionable importance in the formation of good professonds in this
area, conceptud subjects like computer language issues, forma languages, automata theory,
compiler congruction and related topics do demand specid care to be taught, in order to
maintain motivation, despite how arid ther theoretical aspects may agppear to an Enginearing
student.

We decided to reduce this problem by addressng these subjects in a lighter form, without
losing accuracy and without omitting any relevant aspect of the needed scientific foundations.

2.Conceptual framework

Our approach has been to adopt a sngle unified notation for dl dasses of languages, in
order to minimize the need of learning a different notation for each kind of language [1,2].

Snce Computer and Electricd Enginesring students are familiar with the Sae-trangtion
models they derive digitd drcuits from, our firs choice when specifying our notation would
be a s trying to state our language descriptions in terms of states and trangitions.

Next, we searched for a notation that be the closer possible to familiar notations that are
frequently used for representing sequentia circuits.

It would adso be convenient that descriptions of smpler languages be smpler than those of
more complex ones. We searched for conceptua differences between each class of languages
and the next more complex one, in order to determine the correspondence between the
presence of those features in the language and the corresponding notational needs.

From that invedtigation, we were able to sdect a notation which satisfies our requisites by
showing a hierarchica dructure that dlows us to represent languages of any kind of
complexity by drictly usng the corresponding features of the notation that are readly needed
for their representation.

In the remainder of this section we judify and comment the more significant aspects of the
features included in the notation.

Regular languages
regular languages need no more than afinite-state machine for their descriptions.

non-determinism may be eesly diminaed from any finite-state machine by gpplying
wedl-known classcd dgorithms.
sandard finite- state machines may accept any regular language in linear time.

Context-free languages

non-regular context-free languages need pushdown automata to accept them. We may
build such a device by usng the mode caled structured pushdown autometa, with one
date machine for each essentid syntactical condruct in the language, and a pushdown
store for coordinating their operation.

it is possble to minimize the use of the pushdown sore by properly choosng and
desgning the set of date-machines, so that auxiliay memory be used drictly when
darting or finishing each embedded congtruct in the input text

non-determinism may be diminated in many languages by proper manipulation of the
language description and of the corresponding state machines

with this scenario, for determinigtic languages, eech state machine operates as a finite-
date machine, except when handling embedded constructs, when an additiona access to
the pushdown store is needed at the start, and another one at the end of each embedded
condruct present in the input sring. So, we may identify severd subgtrings in the input
text, each handled in linear time by some date-machine. We identify dso severd
changes of control among the state machines, each demanding an extra access to the
pushdown gore. As we know, in any finite dring the maximum possble number of
embedded congructs is proportiona to its length, so the time needed for handling
embedded condructs is dso a linear function of its length. We conclude that such a
scheme lead to an accepting device that operate in linear time for deterministic

languages.

the demands for space is dso linear for determinigtic languages. what is needed is a
datic space for the trangtion tables, which, in the worst case, request space proportional
to the tota number of dates, and a dynamic space for holding control information in the
pushdown gore, which is proportiond to the length of the input sring. So, for
deterministic languages, space demands are dso linear.

for intrindcdly non deterministic context-free languages, dthough there is no way to
find any deterministic acceptor for them, we can manage to build structured pushdown
automata that operate determinigticaly for some chosen subset of the language. For
these devices, response time remains linear while input strings belong to that language
subset. For sentences that do not belong to the subset, its operation will reman on
determinigtic. In this case, deterministic behavior is obtained for sentences in the chosen
language subset a the cost of growing the size of the automaton. The wider the set of
sentences we need the automaton to accept determinidticaly, the bigger will be the
resulting automaton.

Other languages

for languages that are neither regular nor context-free, the device we are looking for
must have features that dlow it to handle context-dependencies. By observing context-
sendtive languages, we can veify that it differs from context-free ones in a fundamenta
point: whenever any context-sendtive congruct is present somewhere in the input text,
the whole text is reinterpreted accordingly. For an accepting device, this fact means that
such an occurrence would have, as a response, an adequate change in the behavior of
the acceptor. This kind of reasoning led us to the modd named adaptive automaton,
which is no more than a structured pushdown automaton, in which trangtions associated
to the discovery of some context-dependency in the source text drive the execution of
attached adaptive actions, respongble for changing the automaton’s behavior, which is
accomplished by means of adequate editing operations on the set of trangtions of the
automaton.

Comments on the proposed notation

from dl the former information, we are now ready to dtate our notation. It will have
three dements. the firs one is a set of date trangtions, needed to represent finite-state
automata; the second is a pushdown store, needed to perform control actions in
sructured pushdown autometa; the third eement are the adaptive actions, which are
atached to trangtions in order to dlow them to edit the automaton. Any trangdtion in the
adaptive automaton will aways have the first e ement, but the others are optiondl.

being drictly syntactical devices, adaptive automata alow describing rather complex
languages without using anything dse such as semantic routines or Smilar dements.
For ingdance, a high-levd syntacticdly extensble language may be completey
described formaly by means of adgptive automata, including the lexicd and extenson
mechanisms, which are traditiondly described separady, and its full Satic-semantics,
including symbol tables, structuring scopes, type-checking and many others, which use
to be handled by extra- syntactic dements, like semantic routines.

once determined the notation to be used for describing languages, we should search for
methods for automating the generation of processors for these languages. In this way we
have developed a software tool that accepts as input a language description, drawn in a
notation smilar to that we had just chosen for the adaptive automata, that smulates the
adaptive device it describes.

The proposed notation [3]
Any automaton will be represented as a collection of productions of the form:
tsaB)® (t,s,a,B)
where each quadruple denote, in this order, the top of a stack, a sate, an input symbol and an
adaptive action. The left one denotes the configuration of the automaton before the trangtion
takes place, and the right quadruple represents the configuration after the execution of the
trangtion.

B represents an adaptive action to be performed before gpplying the production, and B’ is
another adaptive action, to be executed after the application of the production.

Adaptive actions are cdls to adaptive functions, which are declared as ligs of dementary
adaptive actions of ingpection, deletion and addition, gpplied to the current set of productions
in the automaton. Elementary adaptive actions alow to edit the set of productions, in order to
impose modifications to the behavior of the automaton, and has the following aspect:

Altt,saB)® (,s,d,B")]
where A assumes one of the vaues ?, — or +, for inspections, deetions and additions,
respectively.

Inspections dlow asking for productions with a given shgpe in the current st of
productions. Deletions dlow diminating productions with a given shgpe from the current set
of productions. Additions allow adding new productions to the current of set productions.

Regular languages do not use terms t, B, t', @, B’. Context-free languages do not use B,
a, B’. Both regular and context-free languages do never use adaptive actions. In this paper,

we ae going to use these amplified notation only, snce no context-dependent features are
needed here.

So, regular trandtions will be denoted as (s, @ ® S and context-free trangtions in which
the stack is used will taketheform (t, s, @ ® (t', S).

3[Meaching issues [4

In this section we report an experience made by applying the proposed notation in teaching
practical aspects of compiler condruction in an undergraduate computer engineering course,
to students with basic knowledge of finite-state machines and context-free grammars.

Two monthly two-hour classes have been divided in two haves, the firsd of which was
used to review and to introduce concepts and techniques, and the last one to perform graded
practica exercises in class, preparing the student to implement the corresponding program:
exercise in acomputer, as a homework.

Asawhole, the project conssted in the following steps:

The fird dage was intended to exercise the ability of the students in formaly defining
regular and context-free languages. Starting from very smple languages, this step ended after
the student has been able to define al important sublanguages of a typicad programming
language.

With the formd definition of al components of a language dreedy avaladle, the next step
has been to integrate them into a single definition of a Imple but complete programming
language, defined by the student with the aid of textbooks on programming language design.

After tha, but without being exposed to compiling techniques, students were asked to
convet their forma grammars into automata, darting from regular congtructs, which resulted
in programs implementing dl mgor pats of a lexicd andyzer for the language, and then the
rest of the language, resulting in parts of the syntax acceptor of the language.

Then, usud recognition techniques were exercised, through exercises in which the former
grammars have been mapped into top-down and bottomrup parsers. The man results from
this activity has been the increase in the capacity of the student to accurately decide when and
why to use each technique.

The next topic was a deeper study of the particular technique described in the following
section, in which a method is used that alows easy building of a recognition device for a
language directly from a given grammdicd forma definition of its syntax. In this topic,
sudents have the opportunity of comparing the adopted technique with the others, especidly
in terms of building effort needed, and of execution performance. As a homework, the
language defined by the students are manudly converted into the corresponding recognition
device. If time permits the resulting acceptor is implemented in a computer, giving the
students a good feling of the process.

For shorter courses, the next step will be adding semantic routines to the recognizer, in
order to generate code, and the course will be finished.

For norma courses, there is time enough to add a project of a generator of syntax
acceptors, so introducing the concepts and practica issues of metacompiling.

Being dready traned in manudly building syntax recognizers, students are asked to build
another acceptor, for the language of Wirth Notation texts. It will accept any grammar in
Wirth Notation, s0 it would be tested with the formd definition of the language designed by
the students as input.

Next, semantics will be added manualy to the acceptor, in order to automate the activity
dready done manudly by the student when building from the Wirth grammar the acceptor for
the language. The resulting acceptor must be the equivdent to the one previoudy done
manudly.

The lagt step will be putting the acceptor to work and manualy decorating it with semantic
routines for code generation. This will be, indeed, a minor problem, since dl this task will be
reduced to migrating into our acceptor the dready designed semantic routines, which we have
implemented and tested in a previous step.

If time permits, a further test would be performed by using our tool with other grammars,
in order to generate acceptors for other languages.

4[The method proposed [4

The folowing text describes a sep-by-step converson from BNF-like context-free
granmars into equivdent deterministic automata For convenience, we will use the Wirth
Notetion as an intermediate metalanguage, in order to turn it easer the mapping of the
grammear into an equivaent automaton.

A vey smple method is then used that maps this Wirth grammar into a Structured
pushdown automaton which accepts texts in Wirth notation.

Semantic routines are then manudly added to an optimized verson of the resulting
automaton, in order to force it to perform the same procedures we used to manualy construct
sructured pushdown automata from Wirth grammars.

Denoting context-free grammars in Wirth notation

BNF-like notations are very used to dtae programming language syntax. The fird gep in
the condruction of our automaton from such context-free grammars is to convert them into
Wirth notation (for other metdanguages the procedure is very smilar). Apply the following

steps:

Asxociate a different set to each nontermind in the origind grammar, and collect in
each st dl rules defining the correponding nontermind.

Eliminae from each st dl left- and right-recursve rules defining the corresponding
nontermina, retaining saf-embedded expressions.

Let X be a nontermind, and let dl terms different from X in the following expressons
represent arbitrarily long grings of terminds and nonterminas. In the sat defining X in
terms of expressons of the forms Xa, bX, cXdi, em, XfX, we will interpret, for
convenience, expressons of the form Xf,X as being of the form Xa, and gXdx as beng
of theform .

It is easy to show that the corresponding Wirth expression is X = {b} e {a}, where b, e
and a abbreviate bi|by|...|br, ei]e]...|es and a&|ay|...|a, respectivdy, with r, s and t
representing the number of terms of that form in the group. So, rewrite the st defining
X intheform. X = {b} e {a}.

Eliminae from the grammar dl nonressentid nonterminas. Essentid nonterminals are
the root of the grammar and a minima set of independent salf-embedded nonterminds
in the grammar. In case of cydic dependencies among nonterminds, choose from the
cycle the nontermina that be mogt directly deriveble from the root . All other non
esentid nonterminds may be diminaied by subdituting successvely dAl ther
occurrences in the grammar by the Wirth expression defining them, and then repesting
the dimination steps until N0 more non-essentia nonterminas remain.

Preparing a Wirth grammar to be mapped into a deterministic automaton
Once obtaned the st of expressons defining al essentid nonterminas, they must be

manipulated in order to guarantee that they will lead, as far as possble, to an automaton with
determinidtic trangtions.

We may diminate, from the expressons defining each nontermind, dl congructs that
cause nondeterminigtic trangtions to gppear in the resulting automaton:

Explicit empty-dring symbols gopearing in the expressons will generate empty
trangtions, so we would diminate them: convert expressions of the form de | b)cinto
a(c | be)
Explicit nondeterminisms caused by the occurrence of common prefixes among
dterndive expressons may be diminated by left factorization of the longest possble
common prefix for the larget st of dternaives, and then, successvely factoring
eventudly remaning common-prefixes in parentheses. Being a be the longest common
prefix in - &oy|aby|...|abn , we rewrite this expresson as a (bs| by|...| bn).
Hidden nondeterminisms due to the presence of nonterminds as prefixes in one or more
of the expressons in a group of dternaives may be handled by replacing the
nontermina by the Wirth expresson that defines it. Assuming that X® a is the definition
of X, expressons garting by nontermind X, like Xb, will be replaced by (a)b.

Hidden nondeterminisms caused by optiond cycles like {a} may be firg turned explicit
by rewriting it as afa |e, and then diminaing the explicit empty dring from the
expression.

After every trandformation, the resulting expresson must be checked for remaining
nondeterminisms that have to be diminated. For these ones, sdect in the expresson the
most loca scope in which that nondeterminism is active, then diminate dl factorations
previoudy made in that scope of the expresson, before regpplying the former rules until
no more nondeterminisms remain in the expresson.

Mapping a prepared grammar into an automaton

Use one different initid sate for each submachine, associated to one corresponding non
teemind in the grammar. Make the initid Sate of the Starting submachine the initid dtate of
the whole automaton.

All states corresponding to the left ends of those expressions are assigned the same Sate.

Each occurrence of a termind in the expresson corresponds to an internd trangtion
between two gates in the submachine corresponding to the nontermina being devel oped.

Each occurrence of a nontermina in the expresson corresponds to a trangtion that cdls
the submachine associated to that nontermina by pushing the next date into the stack and
transferring contral to the initid sate of the called submachine.

States corresponding to the right ends of al expressons representing the syntactical
options for anontermina are consdered find states of the corresponding submeachine.

Find daes include an empty trangtion that returns control to the caling submachine. That
is performed by smply popping the state contained in the top of the stack into the current
date, so returning control to the caling submachine at the target sate of the caling trangtion.

Groups of expressons in parentheses or brackets will have two distinguished dates one
associated to its lefthand extreme and other, to its righthand extreme. The left date must be
same state associated to the left extremes of al its expressions, and the states corresponding to
al right ends of the expressons must converge into the sngle dtate associated to the right
extreme of the group. Denoting an optiond syntax, bracketed expressons ask for an extra
empty trangtion from the States associated to ther lefthand extreme to the one corresponding
to ther righthand extreme.

Groups of expressons in braces aso ask for this empty trangtions, but in this case the left
extreme of each expresson is associaed to the righthand state of the group, and dl dates

associated to their right ends will dso converge into the state associated to the right extreme
of the group, closing the loop.

Adding semantic actions

Semantic routines are needed to perform severd functions in any language processor. In
our case, adding them to a recognizer will alow it to drive them in order to generate code. For
the Wirth notation, semantic routines will produce as output the trangtion function of the
automaton that implements a recognition device for the language defined by the given Wirth
grammar.

The semantics of the generation related to the Structured pushdown automata from Wirth
expressions may be resumed asfollows:

For each Wirth expresson, defining some nontermina N :

Start with an empty stack.

Initidize state counters: CS= NO (current state), NS= N2 (next State to be assigned).

Assgn NO to theinitid State of the automaton, and N1 to itsfina Sate.

Push the par (NO, N1) onto the stack, in order to memorize this assgnment for future
use

Scan the Wirth expresson defining N from left to right. For eech dement in this
expression, execute the corresponding action A, B, ..., H:

A. Terminal: Generate anew trangtion from CSto NS, consuming Terminal.
Assign NSto CS. Increment NS
B. Nonterminal: Generate a new trandtion from CS to NS cdling submachine
Nonterminal.
Assign NSto CS. Increment NS (e apilha?)
C|: Inspect the ordered pair (L, R) at the top of the stack.
Generate an empty trangtion from CSto R. Assgn L to CS.
D. (: Push the pair (CS,NS) onto the stack.
Increment NS.
E. [: Push the pair (CS,NS) onto the stack.
Generate an empty trangtion from CSto NS. Increment NS.
F.{: Push the pair (NS,NS) onto the stack.
Generate an empty trandgtion from CS to NS, Assign NS to CS. Increment
NS.
G.)], }: Popthepar (L,R) from the stack.
Generate an empty trangtion from CSto R. Assgn Rto CS.
H. - Pop the ordered pair (L, R) from the stack.
Generate an empty trangtion from CSto R.

5[An example project

In order to apply the ideas commented above, we chose a small complete project through
which many concepts and practica issues may be explored.

Being rather trivid, lexicd andyss issues are not covered. Ingead, we study syntectica
and semantic aspects of the condruction of a metarecognizer by sketching its building it in
detail.

Lexical analysis

Lexicd andyss ae eadly addressed as a direct gpplication of finite automata to the
recognition of word categories in a language. For use in compilers, lexicd andyzers are
expected to peform as finite-date transducers, that extract input symbols from the source
program, and generates a token for each lexical item found.

S, a lexicd andyzer will have a finitestate automaton for extracting, from the source
code, drings representing whole lexica items (identifiers, numbers, reserved words,
punctuation, operators, tc).

Once a lexicd item has been recognized, lexicd andyzers dassfy them in thar
appropriate categories and generate as output a token, condsting of an ordered pair: (class,
value) where class represents the categories to which belongs the extracted item (for use in
gyntacticd andyss), and value represents complementary information needed for semantic
andysis and code generation.

Lexicd andyzer congruction may be reduced to the design of a finite-state automaton that,
whenever cdled, extracts from its input streeam a maximum-length dring that follow any of
the formation rules for vdid lexicd items

At each fina date, when accepting another lexical item, the automaton generates as output
the corresponding token, conggting of the information on the class to which beongs the
extracted item, and the corresponding string of input symbols.

Syntactical recognition

The way we chose for accepting syntax in this experiment has been the standard
acceptance of an input string by a structured pushdown automaton.

Being the acceptor formed by a set of finite-state automata, one of these so-cdled
submachines is used as a dating submachine, whose initid date is the initid date of the
whole automaton.

Sating from its initid date, the automaton performs successve trangtions, based on the
current symbol of the input string and the current state of the automaton.

As we have seen before, there will be two kinds of trangtions: finite-state trangtions and
stack-dependent ones. The finite-date trangtions operate just like in the case of finite-state
automata. There are two dtuations where stack-dependent trangtions will be used, both
performing empty trangitions between submachines (calls and returns) only.

For each trangtion, if the st of trangtions in the automaton includes a single trangtion that
is compatible with its current configuration, that trangtion will be determinidticaly executed,
usudly changing the current state and consuming an input symbol.

The input gring is accepted by the automaton if and only if a find date in the automaton is
resched, with the stack empty after the input stream is fully consumed by successve
goplications of vdid trangtions. Although it is not mandatory to impose that our stack to be
empty in find configuration requirements, any other choice would be unnaturd as a find
configuration in our case.

In determinigic automata, dl vaid trangtions will be unique In non-deterministic
automata, there may be severd compdible trangtions, then the configuration of the
automaton will evolve non-deeminidicaly, by <Smultaneoudy peforming al compatible
trangtionsin parald.

In this case, we define that the input sequence of symbols is accepted by the automaton if
any of the resulting paths leads to some find date, with the stack empty, when the input tring
isemptied. In any other casem the input string will be rgected.

Syntax description

The dat point for this project is a grammar describing the syntax of the Wirth notation,
dtated in the same Wirth notation (consder Terminal and Nonterminal asterminals).

Wirth = Rule { Rule } .

Rule = Nonterminal “=" Expression “-” .

Expression =Term { “|” Term } .

Term = Factor { Factor } .

Factor =Nonterminal | Terminal [“e” | “(” Expression“)” | “[" Expression “]” | “{" Expression*“}".

We can amplify the former grammar rules by dimingting the nonressentid nonterminas
Rule, Term and Factor, by gpplying the following steps to the expressons defining Wirth and
Expression:

Subdtitute the occurrences of Rule by its defining expression; then, subditute in the resulting
expression the occurrences of Term by its defining expresson; subgtitute dl occurrences of
Factor by its defining expresson

The following grammar results, stated in terms of terminals and essentid nonterminas only:

Wirth = Nonterminal “=" Expression “-” { Nonterminal “=" Expression “-" } .
Expression =

Nonterminal | Terminal |“e” | “(" Expression “)" | “[" Expression “]" | “{" Expression “}’

{ Nonterminal | Terminal |“e” | “(” Expression “)” | “[" Expression “]” | “{” Expression “}"}

{“I” (Nonterminal | Terminal |“e” |“(" Expression “)" | “[" Expression “]" | “{” Expression “}"

{ Nonterminal | Terminal |“e” |“(” Expression “)” | “[" Expression “]” | “{” Expression“}"})}.

Construction of a recognizer for the Wirth Notation

>From the expressons above, the following structured pushdown automaton may be eesly
condructed manudly by firg applying our method, then eiminating empty trangtions and
equivaent gates, through classcd wel-known agorithms.

Submachine Wirth (trangition-table format):

Nonterminal

Expression =

0 (Initial State)

1/X

1

2/—

2

3/—

3

4/H

4 (Final State)

/X

Submachine Wirth (trangtion-diagram formet):

Non-terminal /

Wirth

.ion-termmal /X

Submachine Expression (trangtion-table format):

() [] { } | Terminal Nonterminal Expression
0 (Initial state) 2/D 4/E 6/F 1/A 1/B
T (Final state) 2/D 47E GIF 0/C /A 178
2 3/

1/G

5/—

71—

3
4
5 1/1G
6
7

1/G

Submachine Expression (trangtiondiagram format):

| . Non-terminal / B
Non-terminal / B

Expression '
Terminal / A
- @

(/D

(/D)IG
Expression

E2

[/1E
Expression
e ©
{/F tie
Expression
E6

A st of semantic actions are then manudly attached to the trangtions of the Structured
pushdown automaton, 0 converting it into a compiler of Wirth grammars into sructured
pushdown automata that accept the languages described by the input grammars.

In the tables above, we called X the routine that initidizes the varidbles and the stack
before each nontermina definition. Routines A, B, ... , H refer to the homonymous routines
sketched in the preceding section. All these semantic routines are executed whenever the
corresponding trangtion is activated during syntax recognition.

By feading this auttomaon with the Wirth expressons we just derived for nonterminds
Wirth and Expression, the semantic routines are cdled in the correct order so that it will
generate an automaton with submachines Wirth and Expression. These submachines, dthough
being equivaent to ours, are not the same as the ones shown above, because they present
many empty trangtions and equivdent daes. By removing such undesred trangtions, it will
result exactly the automaton we have presented above.

Pedagogicdly, this project is twofold: while serving as a base for the sudy of the
condruction of compilers, by addressing issues on the building of syntax acceptors and
semantic routines, this project alows introducing concepts and practica aspects concerning
the automatic generation of parsers for context-free languages, in a very naurd form, thus
abbreviating the expodtion of students to those topics, otherwise usudly uncovered in most
COUrses.

[/1E
l/6

{rF

6[Future Work

Although adaptive forma devices are ill in their beginning as language description tools,
they have dready shown to be effective not only as pedagogicd ad in teaching language-
related subjects but aso as excellent implementation models.

Many applications have been devised for adaptive devices, including language recognition

(adaptive automata), reactive systems description (adaptive statecharts), language generation
(edaptive grammars), dtochadtic generative devices (adaptive Makov chains), and atificid
intelligence gpplications, especialy those reaed to machine learning.

Some of the man agpects of the study of those formd devices have been dready
addressed, but there are many others that remains to be explored.

In the particular case discussed in this article, no adaptive features have been used. We
explored the hierarchicad dructure of the forma moded, which dlowed us to use a unified
notetion for both finitestate and pushdown automata, avoiding unnecessary and time-
consuming teaching of more than one sSngle notation.

As we mentioned before, a software tool is avalable that dlows one to enter a
specification of an adaptive automata (with any desred smplifications), from which the
system automaticaly builds a smulator for the device being specified.

Such a tool is very useful for developing new languages, testing exising autometa, and
automaticaly building language processors from forma specifications. The example included
in this paper shows in avery smplified form how such a metasystem works.

An integrated laboratory may be designed to explore this tool as a common framework for
teeching many important topics in computer science, like: Introduction to computer science,
formd languages and automata, introduction to compiler writing, programming languages,
forma specifications of languages, systems programming, the desgn of sequentia devices,
and many others.

7[Conclusions

The approach we have used in the experience related to this paper has been completey
successful in anumber of aspects:

the grammatica notation based on Wirth's notation is adequate for our purpose since it
shows to be so close to the corresponding automaton and that a very smple mapping
dgorithm dlows us to draw acceptors for the language through very smple
manipulation of agiven grammar.

transducers may be obtained by extending such acceptors with an adequate output
function. By choosng this function conveniently, one may map these acceptors into
parsers, or produce an object language, or both.

the unified notation based on adgptive automata is easy to learn and well-suited for the
forma definition of acceptors for languages of any Chomsky type

adaptive features are dl fully processed in a drictly syntacticd way, with no need for
externdly-coded routines

by exploring adaptive features, extensble languages may be both defined and
processed from a dngle formd definition, dways by means of syntactic methods only,
50 providing a clear and easy-to-understand forma definition of those languages

by exploring intuitive extendgons of dready-known smple models, this gpproach alows
quick teaching of subjects related to quite complex topics, in a very Smple manner, O
motivating the students to go further into the corresponding theoretica topics

by means of the use of this gpproach and accompanying esch lecture with prectica
assignments regarding the next class, understanding of the subject has been dSgnificantly
increased, and teaching speed grew by some 50%, with a Smultaneous relative increase
in the average grade

8[References

[1]
[2]
[3]
[4]

Hopcroft, JE. and Ullman, JD. - Introduction to automata theory, languages and
computation - Addison-Wedey, 1979.

Aho, AV. and Ullman, JD. - The theory of pardang, trandation and compiling - vol 1 -
Prentice Hall, 1972.

Neto, JJ. - Adaptive automata for context-dependent languages - SIGPLAN Notices, vol
29, no. 9, september, 1994.

Neto, J.J. - Introducdo acompilacdo - EditoraLTC, Rio de Janeiro, 1987. (in Portuguese)

