ADAPTIVE AUTOMATA FOR INDEPENDENT AUTONOMOUS NAVIGATION
IN UNKNOWN ENVIRONMENT

JORGE RADY DE ALMEIDA JUNIOR, JOAO JOSE NETO, ANDRE RIYUITI HIRAKAWA
Departamento de Engenharia de Computagédo e Sistemas Digitais
Escola Politécnica da Universidade de Sao Paulo
e-mail: {jrady, jjneto, hirakawa}@pcs.usp.br

Abstract

Adaptive automata have been developed as a formal
device intended to handle complex input languages,
featuring context dependencies. As other adaptive
formalisms, adaptive automata collect information from
its inputs and may change its own behavior in response to
that information. Therefore, such formalisms are able to
dynamically acquire and represent knowledge.
Independent navigation require environment scanning by
the autonomous vehicle and a corresponding update of
the information included in the model of the
environment, allowing proper path planning and adequate
motion control.

This paper briefly introduces adaptive automata and
discusses its use to solve some aspects of the problem of
environment mapping and path planning for independent
autonomous navigation of vehicles in unknown
environment.

Keywords: path planning, adaptive automata,
autonomous vehicle

1. Introduction

The present paper addresses two interesting
applications of adaptive automata: navigation control of
autonomous vehicles and mapping unknown
environments. As a motivation to the exposition of this
subject, a very simple example is presented after a quick
review of the main conceptual background on adaptive
automata, automatic mapping of unknown environments
and autonomous vehicle navigation.

2. Formal Background

The purpose of adaptive automata [1] is not to
replace classical and widely accepted equivalent formal
models, but to offer an equivalent mechanism to do the
same job in some practical way, by allowing the
development of good usable (and eventually
automatically generated) implementations from
(preferably intuitive) rigorous and correctly derived
formalisms.

In order to achieve these goals, the proposed model
embed a few redundancies that, although being

theoretically unnecessary, do ease the practical use of the
model by offering shortcuts to several otherwise
cumbersome operations.

3. Structured Pushdown Automata

Our first attempt to build a formal model allowing
efficient implementations has been made with the
development of a formalism named structured pushdown
automaton.

As finite-state automata allow the most efficient
possible formulation for regular language acceptors,
structured pushdown automata have been designed as a
collection of mutually recursive finite-state-like
submachines.

In its most primitive form, restricting structured
pushdown automata exclude the use of its pushdown
storage, reducing its behavior to that of mere finite-state
automata.

For this restricted type-3 version of the automaton,
there is absolutely no need of changes in the notation.

For type-2 languages, a stack is needed, and the set
of submachines may be easily chosen for the structured
pushdown automaton so that the whole model performs as
a finite-state machine all the time, strictly except at self-
embedded syntactical constructs on the input string, when
recursion is used.

Algorithms are available for designing structured
pushdown automata that employ a minimal number of
submachines, and execute a single recursive submachine
call per self-embedded construct found in the input string.

Structured pushdown automata have enough power
to decide context-free languages, and allow easy
automatic building of O(n) acceptors for deterministic
context-free languages.

An extension has been made to structured pushdown
automata, giving rise to the structured pushdown
syntactical transducer, a very flexible model for
syntactical translation of context-free languages.

One useful particular class of syntactical transducers,
derivable from the structured pushdown transducer, may

be designed to implement parsers for context-free
languages.

One of these parsers’ input may be any sentence of
the language and its output is a valid parse tree for that
sentence, based on the context-free grammar from which
the structured pushdown transducer has been generated.

They have been also used as a theoretical framework
for the design of several compilers and in the front end of
many other practical implementation of textual-input
system- and application software.

4. Adaptive Automata

As the context-free limitation of the structured
pushdown automata seemed to be too restrictive, we
started searching for other models filling the needs of
applications demanding context-dependent power, and
holding the requirement for not loosing the simplicity and
the efficiency of the previous model.

Furthermore, we searched for a model allowing full
description of syntactical aspects of context-dependent
languages, including all so-called static semantics —
symbol tables, block structure, nested environments, type-
checking etc. — and even dynamic syntax — defining
simple, recursive and parametric macros, and other
syntactical extension mechanisms.

All these requirements must be accomplished by the
formal model we were looking for, by means of
syntactical methods only, with no aid of semantic routines
at all.

Our natural choice has been to extend structured
pushdown automata into the model we called adaptive
automaton due to its added self-modifying feature, and
the resulting model did fulfill both requirements.

The only difference between structured pushdown
automata and adaptive automata derives immediately
from the conceptual difference between context-free and
context-sensitive languages: in contest-sensitive
languages, the occurrence of some particular construct in
some specified environment may imply modifying the
way related constructs are to be interpreted throughout of
the input, and that may be obtained by modifying the
behavior of the acceptor for that language.

A very elegant and strictly syntactic way to modify
the interpretation of the input is to modify the syntax the
automaton is able to accept, so fitting the needs of the
new situation.

A straightforward method for modifying the syntax
accepted by an automaton is to changes its topology
according to the desired syntax modifications.

Any changes to an automaton may be accomplished
through a set of elementary editing operations acting upon
its set of transitions: adding a new transition to the set,
selecting from the set of transitions a target transition that

fit some given predicate, and eliminating a selected
transition from the set.

Editing operations may be grouped, and the resulting
groups are named adaptive actions.

Adaptive automata are built from a subjacent
structured pushdown automaton simply by attaching
adaptive actions to its transitions, so allowing the
automaton to edit itself through the application of the
corresponding adaptive actions whenever performing the
particular transitions they are attached to.

Adaptive automata have been used thereafter as the
starting point to a number of other correlate
developments, both in their theoretical and practical
issues, giving rise to variants as Adaptive Statecharts and
Synchronized Adaptive Statecharts [2]

Adaptive automata have the power of a Turing
Machine but, in contrast to this classical formalism, it is
sufficiently attractive and effective for being used in an
easy way by implementers as a specification language,
because it behaves as a formal description metalanguage
that allow the natural construction of practical and
efficient implementations.

By observing the operation of adaptive automata, a
single unusual feature may be indicated to be responsible
by most of their practical power, namely its input-driven
self-modifying capacity.

This adaptive paradigm is not exclusive to adaptive
automata, but it may be applied as well to several other
originally static formalisms, giving rise to a growing
family of powerful dynamically modifiable formal
models.

5. Notation and Interpretation

Adaptive automata are structured pushdown
automata whose state-transition rules may be attached
adaptive actions. The expression below,

(yg,e,sa), A:—>(yg,e,s’a), B

represents the general form of a rule in an adaptive
automaton. The left-hand side of the expression refers to
the current configuration of the adaptive automaton before
the execution of the state transition, whereas its right-hand
side encodes its configuration after the state transition.

The components of the 3-tuples encode the situation
of the pushdown store, the state and the input data,
respectively. After the 3-tuples, adaptive actions are
optionally specified: the left-hand one represents
modifications to be applied before the state transition,
while the right-hand one specifies the changes to be
imposed to the automaton after the transition.

Figure 1 represents the expression above in
graphical notation.

A 1gs B
€
lg’ s’ Q

Figure 1 - Graphical version of the general form of a
transition in an adaptive automaton

Adaptive actions are calls to parametric adaptive
functions, which may be roughly regarded as collections
of elementary adaptive actions to be applied to the
transition set of the automaton.

Parameters are special variables, used in adaptive
functions, to which actual values (arguments) are
assigned whenever the adaptive function is called.

Elementary adaptive actions are the only editing
operations supplied by the formalism. Three different
operations are allowed: inspection, deletion and insertion
of transitions. The expression,

® [(yg,e,sa), A:>(yg ,¢’,8’a), B]

denotes any elementary adaptive actions by replacing the
operator ® by ? for the inspection, + for the insertion and
= for the deletion of a transition having the shape enclosed
in brackets.

Although it is possible to create some graphical
notation for adaptive actions, it would usually seem more
difficult to understand than the algebraic notation.
Therefore, no graphics will be used in this text for this

purpose.

Note that both inspection and deletion elementary
adaptive actions search the current set of transitions for
any transition matching the given pattern. When such a
transition is found, the variables used in place of any of
the components of the elementary adaptive action are
assigned the actual corresponding values in the matching
transition. When used in an inspection or deletion
elementary adaptive action, variables become either
undefined (in the case no match was found) or defined
(otherwise). Anyway, no further assignments to used
variables are allowed.

An additional feature is also present in the model: the
concept of generator. Generators are used to assign names
to newly created states. They are also special variables,
which are automatically assigned unique values at the
start of the execution of an adaptive function, together
with the assignment of argument values to the parameters.
Again, once assigned, both generators and parameters are
not allowed to change anymore.

6. Path Planning

In the robotics research field, one of the most
difficult problems is related to the autonomous navigation
of vehicles. Several approaches have been tried to solve
this problem, but most of them are based on the proposal
of some new algorithm to determine the optimal path to

be described by a specific vehicle, moving in a well-
known environment in order to accomplish some desired
task.[3] [4].

In [5] it is presented an approach for solution of path
planning using automaton concepts.

Usually, these works are addressed to indoor vehicle
navigation, such as for industrial loading and
transportation vehicles, hospital and office job helping
machines.

However, there are few approaches that really
perform independent autonomous navigation in unknown
environment, reacting to generic external static and
dynamic events. This is because, it is very difficult to
model the real world and to adequately map the
environment, due to the large amount of information
needed, to a wrong or poor representation scheme for the
environment facts and to the difficulties of representing
and linking dynamic events to the map. The usual way to
achieve environment mapping is by defining some
actuation boundary, corresponding to physical limits of
the region which can be identified and scanned by the
available sensors, and whose collected information is
stored into some adequately organized information area.
After this first step, the desired path to be described is
calculated that performs some specified job achieves
some established goal. As a complement to this classical
approach, some researchers have introduced an additional
step for updating the database, by using information
collected by the sensors during navigation.[6]

7. Usual Map Representation Strategy

The usual method to model and represent the real
world for autonomous navigation make use of geometrical
features of the environment. One of the most popular
method consists of representing space by means of a
bidimensional evenly-spaced grid, called occupancy grid.

[4]

Each grid cell represents the occupancy probability
of the corresponding area in the real world. The model
consists of a graph whose nodes represent distinct regions
of the real world and whose arcs indicate spatial relations.
Since occupancy grids explicitly reproduce the
geometrical structure of the environment, they are easy to
learn and maintain. Additionally, the vehicle position and
orientation may also be easily represented and recovered.
However, this approach is very expensive, due to the large
amount of memory and time required to build the
occupancy grids. Indeed, in order to accurately model the
real world, the resolution of the occupancy grid must be
high, therefore the learning program module will have to
manage a huge amount of data.

Recent research suggests a more qualitative
representation of the world, based on the more compact
storage, comprehending a few relevant features of the
environment only, such as the topological approach. The
major advantage of this approach is the compactness of

this model, for it optimizes the use of memory resources.
In addition, since this representation is based on a graph
structure, it allows the use of fast path planning activities.

8. Proposed Method

In this work, the adaptive automata is used as the
conceptual representation device for the facts known to
the autonomous vehicle.

In our application example, we make the following
assumptions:

e An autonomous vehicle is placed in an environment
having fixed obstacles (walls, shelves, files, etc.) and
movable objects (chairs, tables). Other vehicles are
allowed as well.

e All the objects recognized by the autonomous vehicle,
that are fixed objects, movable objects or other
autonomous vehicles, are treated as being obstacles.
Otherwise, in the absence of an obstacle, it is
configured a free space.

e The autonomous vehicle hasn’t, a priori, knowledge of
any geographical configuration of the environment it
is going to travel through.

e Several goals may be established for the autonomous
vehicle, such as:

— Topological scanning of the environment: given its
initial position in the environment, the autonomous
vehicle must travel through the whole environment
in order to collect all geometrical information
needed to build a map representing the
environment in a suitable level of detail. In this
case, the autonomous vehicle must collect and
register the location of all detectable elements in
its environment.

— Searching for some specified target: given its
initial position, the autonomous vehicle must move
through its environment, searching for some path
leading to some desired destination (for example, a
given final location in the environment, avoiding
some specified fixed obstacle or movable object,
or another specified autonomous vehicle). Then,
the autonomous vehicle is expected to reach some
established goal. There is no need to map the
whole environment. Instead, the mapping activity
may be interrupted just by the time the
autonomous vehicle reaches the required target.

In both cases, the environment representation must
initially include information on the location of both fixed
and movable elements in the environment.

9. Application Example

Figure 2 depicts an environment including some
fixed objects (walls) and one movable object. The
environment is divided into square cells of fixed length.

In the example, the environment is a 6x6 matrix where an
autonomous vehicle can move vertically or horizontally
only, one cell at a time.

autonomous
vehicle
wall
W/
environment 1UM
/ border

Figure 2 — Example of an Environment for Simulation
The logical representation of the above environment is as
follows:

States = each cell intersection in the matrix
Movements = {North, South, East, West}

Returned values: {North, South, East, West} — {obstacle,
free}

The following algorithm represents the actions
performed by the autonomous vehicle in its task.

Supposing that the autonomous vehicle is in a certain
position, it executes the following actions:

1) sensors the physical environment, detects X

2) consults the already built model of the environment,
gets X’

3) If X=X’ do nothing; otherwise X’ « X
4) Repeat 1 — 3 for the remaining directions

5) Executes some navigation strategy. For example,
follow (x,y) such as DIFF (actual position, final
position) — 0, where x, y is 2D position coordinate
system and DIFF is a function that calculates the
distance between the two positions

6) Executes the suggested movement

7) If the target was obtained, go to 1, otherwise ends
processing

Our system consists of the following modules:

The module Assembly of the Environment is
constituted by a graphical editor which the positions

of fixed and movable obstacles are defined through.
This environment has permits the initial positioning
of autonomous vehicles.

e The module Generation of the Map/Route is
responsible for the estimation of the map and
generation of the route. To obtain the positioning of
fixed and movable obstacles, the autonomous vehicle
has a system of monitoring, having the capacity to
detect objects in a distance of 1 UM. Through this
resource, the autonomous vehicle can make the
mapping of the environment, while moving over it.

The representation of the map is made through
adaptive automata. Figure 3 shows the first step of the
mapping execution — the autonomous vehicle does the
monitoring for the right, finding a fixed obstacle (wall),
generating the state P1 and a corresponding transition P,
starting from initial state VAO. The same occurs when the
monitoring is made below the initial state autonomous
vehicleVAO, generating state P2.

In the case of an empty transition, it is suppressed, in
the figure, the symbol . Transitions with arrows in both
sides represent the possibility that the transition can occur
in both directions.

When monitoring is made for the left, the
autonomous vehicle doesn’t find any kind of obstacle,
generating a state VA1l and two transitions in blank
(indicating allowed movement for the cell in question),
one for the state VAO to the state VA1 and another for the
state VA1 to the state VAQO. The same occurs if the
monitoring is made for the top, generating the state VA2.

In the next step, the autonomous vehicle assumes,
following some decision criteria, some of the possible
positions for its movement, following the generation of
the environment map, as it’s showed in figure 4.

Preserving this mode to obtain the environment
configuration, the autonomous vehicle can cover all
environment, making its complete mapping, resulting in a
representation in the form of an automaton, as it’s
represented in figure 5.

Figure 3 — Initial Mapping of the Environment (the
vehicle is placed as in figure 2)

O
O
)

Figure 5 — Complete Mapping of the Environment

The module Route Presentation is responsible for the
exhibition, in the screen, of movements executed by the
autonomous vehicle, in its task of making the
environment configuration.

In order to implement the suggested adaptive
method, a software tool has been developed including
such features into a previously implemented version [7].

In figure 6 is presented an environment already
assembled, using this software tool. It can be noted, in this
figure, some buttons for the assembly and execution of
the environment, besides the menu bar and the
configuration and movement simulation area for the
autonomous vehicle.

. SYSTEM 2D =] E3

File Ingzert Execute Disturb
Dow X 1|®

Figure 6 — Example of part of an Environment Assembled
Using the Software Tool

10. Conclusions

In this paper, a method for recognizing an unknown
environment has been proposed. This method explores
some concepts from adaptive automata theory, and uses
them for dynamically building a representation for the
environment topology. This representation may then be
used by any standard navigation strategy in order to
estimate the best choice for the next move of the
autonomous vehicle.

This method showed to be a convenient option for
the representation of geographical aspects of the
environment and is adequate for dynamic choice of
navigation paths.

The task of acquiring information from the physical
environment is seldom performed by conventional
systems at navigation time since it is very complex and
space consuming. Our approach suggests a simpler
scheme due to the learning feature of the underlying
model, which allows dynamically changing partial
representation of the part of the physical environment
already know by the scanning system.

Consequently, the autonomous vehicle will be free to
start its navigation task immediately, without needing any
external information on the topology, so navigation may
proceed at any time despite the lack of information on the
whole environment, since the vehicle has the ability to get
all further information needed simply by scanning the
vehicle’s neighborhood and storing the collected
information onto the adaptive automaton representing the
environment.

Furthermore, the dynamics of the adaptive automata
allow discarding old or unused historical information
whenever the system goes out of memory. This feature
allows the system to make better use of available memory
resources.

The next in this experiment will be to increase the
sensing capabilities of the vehicle in order to allow it to
distinguish among several kinds of obstacles, and to
detect other vehicles, when some kind of knowledge
interchange may occur, especially on the shared
environment’s topology.

References

[1] José Neto, J. Adaptive automata for context-sensitive
languages. ACM Sigplan Notices, v.29, n.9, p.115-24,
Sept. 1994]

[2] José Neto, J.; Almeida Jr., J. R. and Santos, J. M.,
Synchronised Statecharts for Reactive Systems, Applied
Modelling and Simulation, 1998, Honolulu, Hawaii, USA,
246-251

[3] Kavraki L. E., Kolountzakis M. N., and Latombe J.;
Analysis of Probabilistic Roadmaps for Path Planning;
IEEE Transaction on Robotics and Automation, V. 14,
No. 1, pp. 166-171, February 1998.

[4] Arleo A., Millan J. R., Floreano D.; Efficient Learning
of Variable-Resolution Cognitive Maps for Autonomous
Indoor Navigation; IEEE Transaction on Robotics and
Automation, V. 15, No. 6, pp. 990-1000, December 1999.

[5] Ben-Shahar O. And Rivlin E.; Pratical Pushing
Planning for Rearrangement Tasks; IEEE Transaction on
Robotics and Automation, V. 14, No. 4, pp. 549-565,
August 1998.

[6] Pagac D., Nebot E. M. And Durrant-Whyte H.; An
Evidential Approach to Map-Building for Autonomous
Vehicles; IEEE Transaction on Robotics and Automation,
V. 14, No. 4, pp. 623-629, August 1998.

[7] Almeida Jr., J. R. and José Neto, J. Using Adaptive
Models for Systems Description, Applied Modelling and
Simulation, September 1-3, 1999, Cairns, Australia

	Abstract
	Keywords: path planning, adaptive automata, autonomous vehicle
	1. Introduction
	2. Formal Background
	3. Structured Pushdown Automata
	4. Adaptive Automata
	5. Notation and Interpretation
	6. Path Planning
	7. Usual Map Representation Strategy
	8. Proposed Method
	9. Application Example
	
	
	10. Conclusions
	References

