
&RQVWUXFWLRQ�RI�PRGHOV�EDVHG�RQ�DGDSWLYH�DXWRPDWD�WKURXJK�JUDPPDU�GHVFULSWLRQV

Ricardo Luis de Azevedo da Rocha; João José Neto

Escola Politécnica da Universidade de São Paulo
Av. Luciano Gualberto, trav. 3, n.158 Cidade Universitária

ZIP CODE 05508 – São Paulo – Brazil
e-mail: rlarocha@usp.br; jjneto@pcs.usp.br

SUMMARY

This research seeks to propose a formulation to an automated method of selection of solutions to
problems, in order to use it as a computational device. The choice of solutions is carried out
through the comparison of the automata models generated starting from the entrance of a problem
in grammar form.
The generated models are adaptive, that is, the formal substratum used as basis in the method and
the device proposition is the adaptive automata.

Key word: Method, Software Engineering, Model Construction, and Automata

1. INTRODUCTION

To solve problems is a task that troubles the human being since when we became conscious of our
existence and of the existence of the physical world; we were faced upon the necessity to survive
in a hostile and competitive atmosphere. According to Darwin, only the more adapted to the
environment survive [8]. However, it can be presumed that the adaptation task is not static and
absolutely inherent, that is, once an individual of certain species is born, there is no biological
determinism on its destiny. There is, therefore, survival or death possibilities, in agreement with
the events associated to its life and with its capacity to deal with such events.

1.1. Vision of the problem and evolution

In philosophical terms, a lot has been studied regarding conscience, and the largest difficulty is
conceptual, ontological, since it is possible to study the effects of the conscience, although it is not
possible to study its origin, because it is not an experience lived by a third person [6]. The critics of
the idea of building intelligent machines use the difficulty of defining conscience, by its own
nature, to deny the possibility to construct of such machines. John Searle affirms that the
conscience is a capacity originated from brains constituted by biological neurons. It would be,
therefore, prohibited to silicon brains to have conscience, unless if they could reproduce the same
phenomenon’s found in the biological brains [6].

In the theory of the computation, two models now in use work with the adaptation possibility: the
genetic algorithms [8] (that reproduce, in computational terms, the operation of the mechanism of
natural selection of the fittest found in nature, whose reproduction cells suffers genetic
recombination and mutation) and the computational agents [9] [5] (a computer system, that
operates in an autonomous, independent way, being capable to make decisions). In the case of the
genetic algorithms, the existence of a measuring function is foreseen (it is built previously to the
execution of the model) that allows establishing a comparison criterion among several solution
models generated by the genetic algorithm and, so, providing means to choose the best. Despite the
construction of the models imitate some of the precepts found in nature; such as the recombination
and the genetic mutation to build new models, the elaboration of the measuring function is still a
difficult problem.

On the other hand, the computational agents have for existence prerogative the knowledge, the
belief. This way, an agent can establish its actions to autonomously face the problems that are
presented.

When observing the computational models, it was noticed that for the proposal of this research,
none of them would be the ideal model, although some characteristics found in each one were
shown useful and, in some cases, necessary (as the self-modifying capacity). The first reasonable
suggestion was to constitute a new model and a new construction method, starting from the
observed models and their construction methods.

Starting from this suggestion, a comparative study of the observed models was accomplished,
looking for the establishment of the ideal group of parameters for the generation of the hybrid final
model. However, the comparative study didn't show how to solve the problem of generating
solutions autonomously, since in all the models the solution should already be embedded or, at
least inferred (through a measuring function). In [5], there is the statement saying that a device is
capable to learn everything that can represent. The solution of problems is not a completely
different case from learning it is an inverse problem. Thus, at this point, the followed road was to
pass through a complexity study, a study about the value of information in itself.

Thereby, a theory that includes algorithms, complexity, probability and information measure, the
so-called algorithmic probability of Ray Solomonoff [7], was retrieved.

1.2. Objectives

The concrete proposal of this research is the development of a model construction and resolution of
complex problems method using an adaptive formalism [1] as basis. The main goal is to find
solutions for computational problems, and being more specific, for those computational problems
that can be transformed into language problems (This choice is due to the need of limiting the
range of the received information that are treated by the generated device). For that, we studied
some of the currently adopted methods and construction and resolution techniques of the models
comparatively, and, we used characteristics of these in the intent of proposing an alternative
method, preserving the studied characteristics that were considered important.

Another objective is to propose a mechanism to search for solutions, which is suitable to the
proposed methodology. This mechanism should be simulated in a computer, that is, it should be a
software mechanism. A prototype for the mechanism is built and tested later on, in way to validate
the hypotheses of the proposal. Thus, the device BSMA (Search of Solutions for Adaptive
Machine) was proposed, formalized, and an experimental prototype was built and exercised, so
that this research was completed. More details can be found in [4].

2. PROPOSED METHOD

The method of investigation of solutions is proposed starting from the characteristics found in the
model of the defined computational device BSMA, that, as mentioned, uses as formal basis the
adaptive automaton, increased with characteristics from another lifted up models, seeking in that
way to guarantee the integrity, the integration and the uniformity of the method.

2.1. Definition of the Method and Construction of the Device BSMA

The proposed method is based on induction, in the following way: For a given problem or question
Q to be solved, the largest possible number of information should be collected, as for example,
theories, models, examples of results. Starting from this information, we organize the picked
material according to their nature, and work with an ordering of this material operating theories
together with models, as if they were hypotheses in an inductive process, and with the examples, as
if they were observed data. Starting from there, we have an appropriate outline to the use of
Solomonoff's theory of prediction, and we can apply Bayes' rule, substituting the a priori
probability by an universal measure, such as the Kolmogorov complexity for prefixes. Then, the
answer to the question is provided as a prediction, if there is reachable answer for the used device
[3].

When is no information about the problem, the question about how to generate an answer is solved
through the use of the common sense. Thus, an answer that is accepted by most of the individuals
is searched for and, then, verified if such answer is correct. The form of producing the answer
through the use of common sense flees to the scope of this work.

The method to be used here will be limited in its aspect of producing solution for new problems,
that is to say, the method is only used when is some information on the phenomenon or the
problem in study. The use of the device BSMA, by a researcher, should be accomplished through
the dispatch of models or theories, and of example data that can be suitable to train the device in
the process of searching for a solution for the proposed problem. The training process can be made
repeated times for the same volume of data, since the device has limited time of execution, doesn't
possess common sense and nor conscience, therefore, it could not have answer even during the
training process.

The operation of the device is done by means of cycles. Thus, a cycle corresponds to a complete
execution of the models; that is to say, the computation steps executed by the used models
compose it. On the other hand, it is necessary to impose limits on the execution time inside of a
cycle, as well as a limit for the number of cycles. That is guaranteed by the existence of a time
measurement device (clock), that controls every execution time.

2.1.1. Specification of the BSMA Device

The adaptive automaton, just as defined, is composed by transitions that can or cannot activate
adaptive functions. In this research, when building a model based on this kind of automaton, the
transitions are enumerated, that is, they are ordered and counted. This way, it is always possible to
identify structural parts of the automaton model, through the ordering number of each part. In the
same way, the adaptive automata models to be executed, or in execution, inside the device BSMA,
are also enumerated.

There is a single controller of time (universal clock). In fact the clock counts the computation
steps, and also the computation cycles (a computation cycle is composed by a group of steps, in
which at least one generated model finished its processing, or the processing time limit was
exhausted [4]). The following rule is established: a random change cannot be executed in two
subsequent computation cycles by the same adaptive function, only by another function. This
means that should have a gap between the execution of a random change and the next random
change execution.

The concept of combination of automaton models is also defined starting from the original
adaptive automaton model. The combination between two models of adaptive automaton is only
possible among distinct pairs from the present models in the device.

A combination, or a random modification, doesn't eliminate the original models; it just increases
new models to the already existent. The new introduced models should be arranged in construction
order, without disturbing the previous order of models. It is specified that at the end of a
computation cycle the models that didn't conclude its computation are discarded and a new order it
is generated.

It is fundamental that there exists a controller element, external to the automaton models, that can
manage and compute the steps and computation cycles, and that induces the combinations.
Therefore, each automaton model has autonomous operation while the controller allows it. This
controller can be modeled in a similar way to the Turing machine, with an infinite tape, filled with
random numeric elements, of which it withdraws the values to be passed in a combination or
random change. This tape can, with practical advantages, be substituted by a function that
generates random numbers.

However, the controller's role isn't only that. It should evaluate the models through the results

obtained and, in that way, recognize the most suitable, discarding the others. The selected models
serve as basis for the generation of the models in the next computation cycle.

Concluding the definition of the method, it is necessary, to establish the requirements of the BSMA
device:

1. The device should possess a central controller;
2. The central controller should coordinate the actions to be taken in the generated models;
3. The models should be structured as adaptive automata;
4. The models should be executed concurrently or in lexicographical order;
5. The central controller should be capable to combine the models;
6. The controller can introduce random changes in the structure of the models, which are

based on adaptive automata;
7. All and any change in the structure of the models can only be accomplished before a

computation cycle;
8. The computation steps should compose the computation cycles, and the controller should

indicate when the steps and the cycles should begin and when a cycle should finish;
9. The controller should be capable to evaluate the models, in way to choose the most

capable to find a solution;
10. The execution of the models is foreseen to last a certain amount previously established of

computation steps;
11. The controller should verify, at the end of the total processing limit-steps, which

computations didn't still finish and conclude them, eliminating the corresponding models
soon after.

Starting from those characteristics, we define the structure of the computational device that is used
by the proposed method. It must be pointed out that, if any computational system is proposed with
these characteristics, it can also be used as a learning system that, through an appropriate training,
be capable to learn to accomplish a certain task and later on to answer to it.

2.2. BSMA Device Proposed

It is fundamental, for the purpose of finding solutions, that the device possesses a register that
allows to identify if the adopted computational trajectory is adequate, that is, if it leads or not to a
solution. For the specification of the register, there are three viable alternatives: Training, Learning
through examples and Specification of a verification function.

The chosen alternative was the first one. By that, at each pair of values of supplied input/output,
the automaton models are generated and exercised; their behaviors are compared with the expected
behavior for each pair. Thus, models that present different behaviors from the expected are
discarded. Each one of the models that reaches the expected answer is used to compose new
solution processes.

So, the input element of the device should specify an initial construction, associated to a set of
triples specified by the user of the device:

{(ei, si, vi)  ei − input, si - output, vi - value, i ≥ 1}n, n ≥ 1.

The register for the measuring function operates with a set of data for which we want to find a
consistent hypothesis, and with the set of automaton models, that represents the set of the lifted
hypotheses. This measuring function determines, in fact, if the solution models are or not thrashing
a path that takes to the goal to be reached, carrying out a role of aim maintenance.

In the Figure 1, the controller element appears as the most important item, since it centralizes all
the actions of the device, triggering the exercise of the solution models through the input and
identification of the problems, accomplished by the input element. Thus, the controller induces
alterations in the constructions, in way to try to generate new models. In case that it doesn't find to

a solution, a cyclic processing may be needed and, even so, a solution could not be reached. In this
case, the answer taken on is “No Feasible Solution”, by inexistence or impossibility of practical
application.

The constructions, that represent the solution models generated by the device, are represented in
the figure through the generated models (M1.. Mn), and together they compose an attaché, that is, a
vector of possible solutions, even so, not necessarily, completely filled. The attachés, composed by
the constructions (M1.. Mn), are independent to each other, being able to generate different
solutions for the problems. The amount of existent attachés in the device depends basically on its
parameter of limit of the amount of allocated space, and also of the amount of different generated
solution models. The combination of both indicates the total amount of attachés, although the
maximum limit is established by the parameter of limit of the amount of space.

Figure 1 - Architecture of the BSMA device proposed

It can be observed that each construction inside of an attaché generates output, which doesn't pass
directly to the controller element. The Figure 1 exhibits the outputs being treated for an element
“CP” (comparison element). This element symbolizes, in fact, that the controller accomplishes a
comparison among the exercised constructions that remained, and this allows to generate the
values of the complexity measures used but not that an specific element denominated “comparison
element” exists. More details can be found in [4].

2.2.1. Meaning of the Solution for the BSMA Device Proposed

The solution is, therefore, taken shape inside of an attaché, for the more adapted constructions,
making with that the device always has to choose, inside of the attachés, the constructions that
should remain as possible solution models, and to discard the others. As specified previously, this
choice is also accomplished through the use of the measuring function, which plays the part of aim
maintenance.

Again, it should be observed that, in this device, the solutions found should always be present in
some construction exercised inside of an attaché, that is, it is supposed that the construction was
already capable, structured to find the solution. The main idea used here is the possibility to
introduce solution models into the attachés generated by the device, through alterations introduced
into the constructions inside of the attachés using combination or probabilistic changes to find a
capable configuration to deal with the problem in subject. The random changes have, therefore,
extremely important role in the search for solutions, since, they can endow the models with
different characteristics from the previously found and to enlarge the search space for solutions.

It is considered that the answer of the device can either represent a solution or barely a negative

$XWRPDWD 0RGHOV

&XUUHQW SUREOHP

3RVVLEOH VROXWLRQ

&RQWUROOOHU

0RGLILFDWLRQ LQGXFWLRQ

� � �

0�

0�

0Q

&3 � � �

0�·

0�·

0Q·

� � �0HPRU\

answer, being able to, therefore, not to be the end of the task of search for solutions. This happens
because, due to the used parameters or even due to the complexity of the problem, the solution
cannot be feasible. However, being assumed that the problem in subject presents feasible
computational solution, the output of the device will be a solution, performed through an adaptive
automaton model. More details can be found in [4].

3. IMPLEMENTATION ASPECTS

The choice taken place to implement the device BSMA was to use a programming language quite
scattered in the scientific community of Artificial Intelligence, that is the language LISP. The use
of this language allows a faster development of the programs, since its abstraction level is higher,
and it operates naturally with symbolic processing. However, the use of a compiler for the pure
LISP language is not so advantageous to this work, since we would not have the facilities of
debugging, of generation of graphic elements, that we have in newer compilers, which introduced
functions for object orientation and the use of a graphical interface.

The proposed BSMA device was, therefore, implemented initially as a prototype, in a platform of
microcomputers of the family IBM-PC and with its code being written in language LISP.

3.1. Construction of the BSMA device

The device was built in a way that its components behave in the following way:
a) There is a function for automaton interpretation previously coded, that handles the constructions

in a way similar to the universal Turing machine, which executes programs and their data that
describe the behavior of a particular Turing machine;

b) The automaton models are being built and modified as the computational device is unwinding
its processing. Thus, starting from a specific input, the models are generated and interpreted
later on. This generation, modification and interpretation procedure is accomplished until
obtaining an answer.

So that the device can execute it’s processing, it is necessary that it receive the information that
will allow it to generate of the automaton models. This way, the first structured element is the
input, after that the controller with its functions, and at last the output element [4].

3.1.1. Analysis of the BSMA Device

When analyzing the proposed device, it is possible, by simple inspection, to define five
fundamental functional classes: the class of input; the controller's class; the class of the automaton
models interpreter; the class of the automaton models; and the class of the outputs.

As established previously, the proposal is to use specific grammar ontology, language ontology.
This doesn't remove the generality of the principle, although in practice it reduces the
implementation difficulty drastically. The generality is preserved due to the well-known
equivalence among languages, grammars, automata, recursive functions as alternative forms of
expression of computations. In this work, that is especially concentrated on showing the feasibility
of such device, it becomes very convenient to use this simplification in this phase of the
development of this research. Thus, the input element can capture the user's specifications and
build a generic and possibly non-deterministic initial automaton model [4]. For the specification of
the problem, it should be sent a set of three lists of arguments and a symbol (the initial symbol of
the language). The lists are the following ones: List of Terminal Symbols; List of Non-terminal
Symbols; List of Productions.

A specification example is the regular language composed by even amounts of elements “a”, L =
(a2)*, or using the adopted notation L = (a a)*, whose specification is: Initial symbol: s; List of
Terminal Symbols: (a); List of Non-terminal Symbols: (s aa a*); List of Productions: ((s -> a*) (a*
-> () (aa aa a*)) (aa -> a)).

Figure 2 - Input Screen (regular language)

In the example in subject, the second rule of the list of production rules: (a* -> () (aa aa a*)) is
interpreted as an “or” between the symbol of the empty rule “()”and the list (aa aa a*).

The test (or training) cases, which will allow exercising the suitable models and, starting from that
exercise, to determine which are the more suitable, the best of them. Using the same previous
example, the lists are of the type: Valid cases: ((a a) (a a a a)); Non-valid cases: ((a) (a a a)).

For the valid cases two strings were specified: “aa” and “aaaa”, while for the non-valid cases were
specified: “a” and “aaa”.

Figure 3 - Input of training cases (regular language)

Through these specifications, the input element captures the information and passes them again to
the control element, which continues with the generation stage and exercises them. In this case:

Using the criterion adopted for the measuring function, we obtain a complexity value for the first
model larger than for the second model. Thereby, the second model is the best. Towards that, the

0RGHO �0RGHO �

D
�

�

D

D

� D

D

�

�

answer sent to the user is the second model, in the following way:

Figure 3 - Output generated by the device

This way, the generated result is the simplest model of automaton to solve the problem. In this
screen, the user can close this processing up coming back to the initial screen, or to request new
attempt.

In an identical way the context free languages can be considered. But in the context dependents'
case adaptive functions are used. Thus, when representing a language of the type anbn, it should be
specified in the following way: ((s -> a*) (a* -> () (aa a* bb)) (aa -> a) (bb -> b)). The device
BSMA treats a production of this type through the creation of adaptive transitions. In the
exemplified case, when entering in the production a*, through the rule aa, the device generates an
adaptive function that, when executed, generates a new transition that connects the current state to
himself, consuming the symbol indicated by the rule aa. When leaving of the production a*,
through the rule bb, the device generates an adaptive function that, when executed, eliminates a
transition that connects the previous state to the current state, and consumes the symbol indicated
by the rule bb. So we have the following model:

The adaptive function $ executes four adaptive actions basically; the first of inspection, identifying
the transition that consumes the symbol b and it connects a state to be determined to the final state
(1). After the identification, the adaptive function eliminates this transition, and in its place it
restores two other, the first connecting the state determined in the inspection action to a new state
(generated), and the second connecting the state generated to the final state (1), both consume the
symbol b. Thus, at each execution of the adaptive function $ one new intermediary (not final) state
is generated, and the model in execution becomes to have one transition more.

3.1.2. Execution of Models in the BSMA Device

The execution of the models is performed through a simulation. Each model is composed by its
transitions (adaptive or not), and in the simulation we have a table in whose columns we have a
model, a pointer to the current state of the model and an execution stack (in fact it is represented by
a list), and in the lines we have the several models that should be she simulated. At each simulation
step the table is traversed, and if some model cannot make a transition, then it is marked with a
fault indicator (in its current state). At the end of the simulation only the models that could reach
some final state, and have their stack empty, are considered accepted.

D

E
�

�

D �$

3.2. Comments on the Practical Part

For the device proposed BSMA, the way used to limit the total number of models is the choice
based on the complexity measure. In the studied cases, when limiting the search space,
nevertheless, the best models were present in the remaining space. This suggests that this
complexity measurement can be in fact an element router, and that its use for the proposed BSMA
device can aid the best choice, even if one needs to eliminate some models because of space lack,
or to limit a combinatorial explosion.

An interesting and classical consideration, regarding regular languages and finite automata, can be
found in [2]: a study regarding the worst case in the generation of models of deterministic
automaton reveals that, for the case of being a total of R production rules in a regular grammar, to
generate the best deterministic model, the algorithm should spend, in terms of time, values of the
order O(2K), where K represents the number of states. When making the same calculation for the
worst case of the proposed BSMA device and, considering that won't be restrictions with
relationship to the number of transitions and generated models, the following is gotten: the total of
generated models is of 2(k-1), therefore, of the order O[2(k-1)]. When comparing the two values, we
have: K = 2R; k = R + 2 ⇒ k ≅ K / 2, for R >> 2 (big R) [4].

This is a better result than the previous, although it is also of exponential order. However, it can be
considered that the algorithm implemented by the proposed BSMA device can limit the search
space enough in a feasible computation, working in a polynomial space, at the cost of decreasing
the chance of finding a solution, in case the reduction is drastic in relation to the total search space
[4] [10].

4. FINAL CONSIDERATIONS

In this research, a method is proposed to structure computation models, using the adaptive
automata as substratum. Other important computational models, with different characteristics from
the adaptive automata, were also studied to compose the method and to allow the construction of a
device that could learn and to achieve solutions to complex problems.

Among the different characteristics found in another computational models we have: the
possibility of introduction of random modifications, similar to a genetic mutation (found in genetic
algorithms); the combination of structural parts, transitions, in the models (also found in genetic
algorithms); the training possibility and the exercise of elements in parallel (found in neural nets),
etc.

For other problems that involve optimization, or search for the best alternative, the BSMA device
proposed is also propitious, since it always accomplishes the search for the best solution model,
based on complexity reduction. It suffices to formulate the problem with this directions, that is to
say, as a problem of complexity minimization expressed in language form, and to use the device.

Finally, the method and the device proposed BSMA allows the use of the adaptive automata to
solve learning problems and resolution of problems, because the method foresees training. Thus a
model, like the example of the decision tree, can “learn” to solve a problem and, starting from then,
infer answers to subjects or situations to which it was not trained. With that, we have an alternative
study in the artificial intelligence area.

Comments

At once, it is observed that a possible and important amplification is the use of natural language to
formulate the user's solicitations, what will demand the elaboration of a sophisticated man-machine
interface that is appropriate to that purpose.

In relation to the prototype of the BSMA device, some critics can be done. The main of them says
respect to the constructions of automata: such constructions can be enlarged to best represent and

explore the adaptive automata, this way the input of problems would be enlarged through some
form of context dependent specification.

5. BIBLIOGRAPHICAL REFERENCES

[1] JOSÉ NETO, J. Adaptive automata for context-dependent languages. ACM SIGPLAN Notices,
v. 29, n. 9, p. 115-124, Sep. 1994.

[2] LEWIS, H. R.; PAPADIMITRIOU, C. H. Elements of the theory of computation. New Jersey,
Prentice-Hall, Inc, 1998.

[3] LI, M.; VITÁNYI, P. An introduction to Kolmogorov complexity and its applications. 2nd. ed.,
New York, Springer-Verlag, 1997.

[4] ROCHA, R. L. A. Um método de escolha automática de soluções usando tecnologia
adaptativa. São Paulo, 2000. 211p. Doctoral Dissertation – Escola Politécnica, Universidade de
São Paulo.

[5] RUSSELL, S. J.; NORVIG, P. Artificial intelligence a modern approach. New Jersey,
Prentice-Hall, Inc., 1995.

[6] SEARLE, J. O Mistério da Consciência. São Paulo, Martins Fontes, 1998.

[7] SOLOMONOFF, R. J. A formal theory of inductive inference - Part I and Part II. Information
Control, v.7, p.1-22; p.224-254, 1964.

[8] SPEARS, W. M.; DE JONG, K. A.; BÄCK, T.; FOGEL, D. B.; DE GARIS, H. An overview of
evolutionary computation. In: European Conference on Machine Learning, 1993. Proceedings. p.
442-459.

[9] WOOLDRIDGE, M.; JENNINGS, N. Formalizing the cooperative problem solving process.
In: Thirteenth International Workshop on Distributed Artificial Intelligence (IWDAI-94), Lake
Quinalt, WA, 1994. Proceedings. p. 403-417.

[10] ROCHA, R. L. A.; NETO, J. J. Uma proposta de método adaptativo para a seleção automática
de soluções. Tandil - Argentine, ICIEY2K, Proceedings, Accepted.

