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Abstract. We used an automated problem solution selection method, defined in [4], to build and study a 
computational device. The choice of solutions is carried out through a comparison among the adaptive 
automata models generated, based on the complexity of the models; the least complexity leads to a better 
model. We input a problem in grammar form. We also study the computational complexity of the device 
developed. The generated models are adaptive, which means that the formal substratum used in the method 
and the device is the adaptive automaton [1]. 
 
 

1. Introduction 
 
In this section some definitions are put out, and their consequences are studied, 

preparing for the next sections, where we try to show that under some conditions the 
answer will be achieved in polynomial time [4], [5]. 

The results obtained here have some similarities with those results obtained by Valiant 
for PAC-learning [3, 12]. 
Definition 1: A device BSMA (Adaptive Machine to Search for Solutions) is specified through 
the n-tuple M = (Le, Ls, Lmem, E, λ, κ, θ, τ, ω, ψ), where: 
Le: input language 
Ls: output language 
Lmem: work language, at the memory of the device 
E: input function 
λ : Combinations generation function 
κ : Copy generation function 
θ : Control function 
τ : Measuring function 
ω(n, m) : attachés' vector (constructions matrix), for each one of the n attachés, there is a 

maximum of m constructions 
ψ : Output function. 

In order to identify each construction, the ω(n, m) indicates for each attaché (1..n), m 
automata constructions. This way, each construction can be completely identified in the 
device, and used to generate new constructions. 



Input Language: The input language of the BSMA device uses the situation logic [4], which 
allows receiving a specification that can be used to generate solutions. Each input should 
fulfill a situation, that is, indicating where, when and which are the actors of the situation. As 
established in [4], the input language contains the specification of the grammar for a 
problem, specified as a language, since we chose language ontology. 

To characterize the device, we suppose that the input language allows an automaton 
specification, through the input function E. Therefore, starting from the input, the device 
deals only with automaton models. 
Output Language: automata models generated by the device. Each model is composed by a 
list of transitions. The device answer is a list of the transitions of the automaton. 
Memory Language: The device memory is composed by two infinite tapes: one 
unidirectional tape, completely filled with random positive integer values, and other, to work, 
which stores the computational steps, the computational cycles and the values caught by the 
measuring function. That tape is bi-directional, just to allow the access to the information 
regarding previous steps. 
Definition 2: Control algorithm for the BSMA device. This algorithm allows the 
coordination of the actions taken, activating constituent parts, and guaranteeing the search 
for solutions. If there is feasible solution, the algorithm 2 will drive to it. The algorithm is 
sketched below. 
BSMA-Control: 

Capture through the element Input the test data, the formulation of the initial model 
(hypothesis); 
Distribute the initial model by the constructions; 

For cycles = 1 until cycles-Limit do: 
Produce combinations among the constructions; 
Distribute to new constructions the new combined models; 
Induce random changes; 
For step = 1 until upper-Limit do: 

If step < upper-Limit then 
Perform a step in the constructions; 
Verify the state of the constructions; 
Update the attachés´ matrix; 

If there is a construction that didn't stop, mark it as inadequate; 
Exercise the other constructions; 
If there is a construction that doesn't drive to an answer, mark it as inadequate; 
Eliminate inadequate constructions; 
Store the appropriate constructions; 
Distribute the appropriate construction models to the constructions, until space-
Limit beginning by the finalization order and by the smaller Kolmogorov 
complexity (using the measuring function τ, definition 8); 

If there is no solution, change parameters of occupied space and maximum number of 
computation steps to reach “MaxLimit” and restart algorithm; (The value of MaxLimit 
is known by the algorithm, and it can vary in agreement with the implementation of the 
device) 

If there is no solution, indicate “no feasible solution” 
Else indicate “feasible solution” and the solution (chosen automaton model); 

End BSMA-Control: 
Definition 3: Internal state of the device configuration. Adapting the definition proposed by 
Shepherdson [7], the internal state of the BSMA device represents a configuration of the 
device (in which each construction represents a Shepherdson processor), and it is 
represented by a quadruple 〈x, pd, m, pr〉, in which we have:  



• x: control state (current state), represented by the state of each construction j, inside of the 
attaché i. Then, x is an element of ω(i, j). 

• pd: processor dispatcher, finite group of tuples 〈y, ƒ, x1, ..., xn〉, that represents, each one, 
the instruction to compute ƒ( λ1, ..., λn), where λi are data elements located in x1, ..., xn, 
and y is the label of the processor, uniquely identified. For the BSMA device, tuples are 
composed by the transitions of the adaptive automaton model, which are particular to each 
construction. Thus, it is always possible to the controller element to determine what was 
the consequence of a construction computational step, and, to indicate which construction 
should accomplish the computation of a function. 

• m: memory map, a finite group of orderly pairs 〈l, d〉 indicating that the element described 
by d is located in the position l. The memory of the BSMA device is composed by the 
states and transitions of the constructions, as well as of all the attachés, along the time. 
This means that, to each problem, it is possible to know if a certain construction inside of 
an attaché was previously used. 

• pr: processor record. The matrix ω(n, m) indicates the current state of each processing unit 
(construction), describing each one of the n automaton attachés and their internal 
constructions (M1 .. Mm). 

Definition 4: Computational step. In the BSMA device, a computational step can take one of 
two ways: a complete transition that occurs in the constructions, even if it is needed to 
change the topology of an automaton model in a construction, or, a step in the controller 
element machine. When the constructions (solution models) are being exercised inside of the 
device, a step is interpreted as a transition. Therefore, let αk be a configuration of an 
automaton model of construction j of attaché i. After a computational step k in this 
construction, a transition occurs and changes internal configuration to αk+1. 

Thus:α α
ω

k
BSMA

k
i j

|
( , )

− +1 . The symbol |
( , )

−
BSMA i jω

indicates a computational step performed by the 

BSMA device, through the construction ω(i, j). 
Definition 5: Computational cycle. In the BSMA device, a computational cycle is an amount 
of computation steps previously defined that configures a limit. When some construction 
finishes it’s processing in a smaller or equal number of steps than the limit of the cycle, we 
have a closed cycle of computation. Otherwise, the cycle is considered unfinished, and its 
model should be discarded. 

Therefore, a computational cycle reaches a final configuration αf from an initial 
configuration αi. If αf is the configuration that finishes the processing of the construction, 

then the cycle is said closed. So: α α
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reflexive closure over the step operation, and is valid only if the cycle is closed. 
Lemma 6: On a computation cycle in a BSMA device with limit of steps N1 ≥ 0, all the 
exercised automaton constructions conclude their computational process in a number of 
steps n ≤ N1. 
Proof: Immediate from the definitions of computation step and cycle. 
Theorem 7: A BSMA device, that has a limit of steps N1 ≥ 0, avoids the “Turing machine 
halting problem”. 
Proof: It follows directly from previous Lemma 6. 
Definition 8: Measuring function to the BSMA device. τ  - (Function aim maintenance). This 
function allows task cost measuring of the relative distance of each construction to a possible 
solution. However, it doesn't involve direct storage of time, it does an indirect measure, 
through the computational steps. 



The relative distance is measured through the complexity of each construction. All these 
information are stored in the memory tape, in a way to modify the relative weight of the 
measures taken. 

The measuring function is used only on the constructions that reached a final 
configuration. Its expression is similar to the induction principle MDL, carried out over the 
automaton model. 

The invariance theorem [3] shows that different codes of the same algorithm lead to 
similar values of complexity, and that the difference obtained is only due to the code used for 
the conversion of the algorithm to a particular machine. Through that theorem, and the fact 
that an adaptive automaton model is equivalent to a Turing machine model [6], we can 
conclude that the complexity measure of the adaptive automaton model also represents the 
algorithm complexity of the program of the universal Turing machine that simulates it. 

For the MDL principle [3], the derivation of an approximation for the Kolmogorov 
complexity measure results in: L(x) = K(x) ≈ log(x) + 2log(log(x)), for binary strings x. The 
complexity measure of an adaptive automaton model cannot be performed only in terms of 
the amount of states and transitions, but we must consider the transitions that contain 
activations of adaptive functions, which can increase or decrease the amount of states and 
transitions of the automaton at each computation step. We compute n in the following way: n 
= total number of states + sum of all the adaptive actions of increase + sum of all the adaptive 
actions of deletion + number of transitions. In the present case, L(n) represents the measure 
of the code length based on the number n calculated as described. 
Definition 9: Actions control on the BSMA device (support to the aim maintenance 
function). This function allows the controller to mediate the actions taken inside of the 
attachés. This function guarantees that the computational process is feasible. 

A computational process is considered feasible if it offers an answer within certain limits, 
in time and space. This characterization of feasible creates a dependency between outside 
parameters and the computational process, because waiting for an answer of a computational 
system is a function determined by the user of that system [3]. 

Thereby, we can define feasible computation as a task whose processing is limited by a 
control function. This function has as parameters a couple of arguments, the user’s 
acceptable space and time limits. 

During the computational process, the control function indicates if this process is within 
the imposed limits. If it is not, it will be stopped, because it escaped to the desired pattern. 
So, the foreseen computational limits are incorporated to the device. 

Let θ be the control function. θ : N × N → N × N, θ Maps pairs of natural numbers in pairs 
of natural numbers, with the following properties: 
a)  θ(1, 1) = (T, p + d), where “T” represents the time of the largest computational step 

performed by the device, “p” represents the space occupied by an adaptive transition in 
number of bits, on the device, and “d” represents the space occupied by the representation 
of the device in bits. 

b)  θ(m, 1) = (m × T, p + d), where “m” represents the number of computational steps carried 
out by the device. 

c)  θ(m, z) = (m × T, z × p + d), where “z” represents the number of constructions used by the 
device. 
Therefore, the feasible computation limits, in terms of space, can be determined through 

the knowledge of the maximum number of attachés. Assume such value as “a”. Thus, 
supposing that the external values supplied for a feasible computation are time “t” and space 
“e”, we have: 
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As a consequence of these definitions, we can deal with feasible computation inside a 
computational model through the control function θ, which maps the external information 
inside the process. 
Lemma 10: A BSMA device satisfies to the four Gandy-Shepherdson principles for 
mechanisms computing over arbitrary structures [7]. 
Proof: Based directly on the Gandy-Shepherdson principles and definition 3. 
Theorem 11: A BSMA device has a parallel Turing machine computational power [7]. 
Proof: The computation over partial structures Theorem (see [7]), demonstrates that any 
mechanism that obeys the Gandy-Shepherdson principles is equivalent to a parallel Turing 
machine. Lemma 10 shows that the device obeys the principles. 
Lemma 12: Prefix code Computation. In the BSMA device, the computational process 
accomplished by the automaton constructions is based on a prefix code, which means that an 
automaton model represents a self-delimiting prefix code. 
Proof: By the definition of partially recursive prefix function. A self-delimiting prefix code is 
defined as a computational process that accomplishes a partially recursive prefix function. 

According to the definition, found in [4] and in [1], an automaton model can finish its 
computation if, and only if, it reaches a final state. In any case, the model doesn't need any 
information about the next states or transitions. Therefore, by the definition, it constitutes a 
self-delimiting code. Each model represents a prefix, and this prefix is proper. 

Let φi(x) be a partially recursive prefix function, that can be carried out by an automaton 
model Tj(i, x). By Theorem 11, when granting to each parallel model the possibility of 
execution within limits of time and space, the BSMA device is, in fact, creating an 
enumeration of models Tj(i, x), that are capable to complete their computation task in the 
smallest number of steps. Thus, the device defines an enumeration in the space of 
configurations, containing only self-delimiting prefix codes. 

 
Lemma 13: Kolmogorov complexity. The BSMA device implements an algorithm that allows 
the determination of a complexity measure distribution and of the smallest Kolmogorov 
complexity measure for the exercised models (established in the definition 8). 
Theorem 14: Search for solutions algorithm. In the BSMA device, the implemented search for 
solutions algorithm follows the LSEARCH algorithm [3]. 
Proof: From the Lemmas 12, 13, and definition 2, the device implements an enumeration of 
the automaton models that concluded their computation, and traverses the automaton models 
space through the insertion of probabilistic changes and combinations. The LSEARCH 
algorithm does exactly this task, but in lexicographical order. This way, the device 
implements the LSEARCH algorithm; even so it uses a random order distribution for the 
models, it searches the same space of models. 

 
Definition 15: Function for generation of random sequences in the BSMA device. This 
function allows the generation of a sequence of pseudo-random values. These values are 
numeric and they are stored in the memory tape of the device. 
Definition 16: Function for verification of random sequences in the BSMA device. This 
function allows verifying if a sequence of values in the memory tape is random, through a 
Martin-Löf test of on the sequence. The test consists of the verification of the value found for 
the frequency of occurrence of the symbols in the sequence, which should have equivalent 
value for each symbol [3] [9]. 



Lemma 17: Random sequences in the Device. In the BSMA device, a random sequence can 
be used in the case of random induction, or combination. 
Proof: Immediate of the definitions 15, 16. 

 
Lemma 18: Convergence of the expected value. Let Sn be the expected value of the square of 
the difference between the value of an universal measure for the a priori probability and the 
probability value attributed through the distribution m(x) established in the Lemma 13, then 
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Proof: Based on the Lemma 13 and in the Expected Value Convergence Theorem for Turing 
machines, proved in [8] and [3]. 

 
Lemma 19: Space complexity in the BSMA device. The occupied space by the BSMA device, 
in a feasible computation, is given by a function of order O(np), in which “n” is the maximum 
number of states found in the generated models. 
Proof: Let Cmax be the obtained value of the definition 9, the maximum space occupied by a 
construction, and make C = a.Cmax, where a represents the number of attachés, according to 
the definition 9. Thus, supposing the existence of a positive integer value r, whose value is: 
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log , where C and n were previously defined, we have: nr ≤ C. 

We can suppose that we are allowed to have a new construction whenever necessary, until 
reaching a maximum number of C constructions. In those conditions, the space limit of each 
automaton model is of the order O(n2) [6], where n represents the number of states of the 
model. Admitting M as a total of models and letting E be the occupied space limit of an 

automaton model, we have that M = C/E. Therefore, )(
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p = r–2, we have thereby that the occupied space in a feasible computation is limited by 
O(M) = O(np), that is a function limited by the order O(np). 

 
Theorem 20: Time complexity, for the BSMA device. The time spent by the BSMA device to 
find a feasible solution, in a single group of computational cycles (using the original 
parameters of the device), is given by a function of the order O[n.t(n)] where “n” is the size 
of the largest string of a group of strings to be analyzed, and t(n) is time that another 
algorithm takes to invert the problem. 
Proof: Based on Theorem A.8 [6], since the adaptive automaton spends time proportional to a 
Turing machine and, in this case, it is proportional to the size of the string “n” for each 
construction. Let “m” be the number of strings of the set to be analyzed. Despite of having to 
test “m” strings, the device can make it in a concurrent way (supposing that doesn't overcome 
the limits of the previous definition 9). By the LSEARCH Theorem of [3], we have that, if a 
function inverts the problem in t(n), then the algorithm inverts it in C.t(n) and, as the device 
implements the LSEARCH algorithm, it also inverts the problem in C.t(n), that is, of the 
order O[t(n)]. Even so, by the hypothesis, the number of computation cycles c was not 
exceeded. Thus, if k ≥ m/n is a constant integer value, representing the relationship between 
the number of strings and the largest string of the group, we have approximately t(n) × m 
steps, or t(n) × (k.n) steps. This result is only valid if the solution was found with the original 
parameters. Therefore, the time spent by the device searching for a feasible solution is of the 
order O[n.t(n)]. 

 
Definition 21: Function to generate copies in the BSMA device. This function allows 
generating copies of the constructions present in the attachés, in a way to allow that each 



construction can be used again, in its original formulation before the computation cycle have 
been initiated. 
Definition 22: Function to control the changes in the BSMA device (combination function). 
This function allows the controller to ask for changes by combination, on the constructions 
inside the attachés. The combination is always accomplished among neighboring 
constructions, through the exchange of a transition. The choice of the transitions to be 
exchanged is random, and is indicated by the controller that supplies the number of the 
transition, and indicates which are the constructions that must exchange. 
Definition 23: Output function supplied by the BSMA device. This function allows the 
controller of the device to output the current constructions in the attachés. In the control 
algorithm, the appropriate outputs are candidates to the solution. However, the chosen 
solution is the one that exhibits the smallest complexity, and their transitions are sent, exactly 
as stored internally. 
Definition 24: Evident solution in the BSMA device. A solution found by the BSMA device is 
evident if the amount “Tm” of models internally generated until finding it is: Tm ≤ nk, where 
n represents the maximum number of states of the generated models and k ≥ 1. This means 
that a solution is considered evident, if the number of necessary models to find it is limited 
by a polynomial order, in relation to the maximum number of states of the models. 
Theorem 25: To a solution of a problem that can be found in the BSMA device, we admit that 
each generated model in the device can answer in polynomial time and have a maximum 
number of states n, so we have that the time complexity to find the solution is of the order 
O n( )Σ

2

, where Σ represents the amount of symbols of the alphabet used by the device. In 
the cases where the solution model is evident, this value can be reduced in terms of time to 
O[p(n)], that is, polynomial time. 
Proof: Using the adaptive automaton definition, we observe that there are a number of 
symbols Σ. Therefore, each possible state can consume different Σ symbols. An 
automaton model, with n maximum number of states, occupies space corresponding to the 
order O(n2), that is to say, the number of possible transitions is of the order O(n2). Therefore, 
there are O n( )Σ

2

 automaton models to be generated and tested. By the hypothesis, each 
model answers in polynomial time. We have then that the time complexity is of the order 
O n( )Σ

2

. 
For the cases in that is evident solution, the definition 24 establishes that we need to 

generate and test only an amount of models of the order O(nk), where k ≥ 1, to find a solution. 
Let q(n) be a polynomial that represents the necessary order of time to evaluate each model − 
hypothesis of answer in polynomial time −, then the time t(n) necessary to evaluate each one 
of the models is equivalent to the order O[q(n).nk], because we need to evaluate the whole 
search space. To the generation of the models, the time complexity in terms of time spent by 
the device, is at most of the order O[t(n)]. Therefore, as the generation and the evaluation are 
accomplished in sequence, we have that the complexity order for the task of finding a 
solution is at most of O[q(n).nk]. So, if the solution is evident, the complexity reduction is 
from the order O n( )Σ

2

 to the order O[p(n)], where p(n) = q(n).nk. 
 

Theorem 26: To a problem that can be represented in the BSMA device, with evident 
solution, which feasible computation space-complexity is of the order O(np) (by Lemma 19) 
inside the device, we have: if k ≤ p the solution in a process of feasible computation will be 
optimum, and, if k > p, we cannot guarantee that if we find a solution it’s  an optimum one. 
Proof: Using the definition 24 and the theorem 25, the amount of necessary generated models 
to find a solution is of the order O(nk). 

Lemma 19 establishes that a feasible computation occupies space of the order O(np), that 
is to say, it generates an amount of constructions of the order O(np). 



By hypothesis we have a feasible computation for the case of k ≤ p. Therefore, the 
optimum solution is inside the space to be searched, thus, the device finds an optimum 
solution in polynomial time. 

In the case where k > p, and, by hypothesis, there is feasible computation, then we can 
find a solution. However, as the search space O(np) can be lower than the necessary space to 
find the optimum solution, there is no warranty that the optimum solution can be found in a 
feasible computation. 

 
 
 
5. Final Remarks 
 

For problems that involve optimization, or search for the best alternative, the BSMA 
device proposed is propitious, since it always accomplishes the search for the best solution 
model, based on complexity reduction. We need to formulate the problem as a complexity 
minimization problem expressed in language form, and then use the device. 

Finally, in the BSMA device we can have computational solution in polynomial time, 
even when k > p (Theorem 26), or when there is no evident solution, although there is no 
warranty that it can be found. Finding such solutions (non evident solution) in polynomial 
time depends on the organization of the search space, because if there is a solution that can 
be found in the np limit, then it will be found, although it is not evident. The solutions 
demonstrated as being evident, with k ≤ p, are found in polynomial time. 

These results are consistent and quite similar to the results obtained by Valiant for 
PAC-learning [3, 12], but less restrictive in the sense that even though we cannot guarantee 
that a solution would be found, it can be found. Which indicates that these results can be 
generalized. 
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